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a b s t r a c t

Potential of front-face fluorescence spectroscopy was evaluated to classify muscles according to their
chemical and rheological characteristics. Seven bovine muscles (Semitendinosus, Semimembranosus, Tensor

fasciae latae, Rectus abdominis, Longissimus thoracis et lumborum, Triceps branchii and Infraspinatus) were
taken from 14 animals of the Charolais breed. Chemical characteristics and rheological properties of the
meat were determined including dry matter, fat, collagen, protein, peak load, energy required to rupture
and cooking loss. Emission spectra in the 305–400 nm, 340–540 nm and 410–700 nm ranges were
recorded using front-face fluorescence spectroscopy by fixing the excitation wavelengths at 290, 322
and 382 nm, respectively. Analysis of variance (ANOVA) applied on chemical and rheological parameters
showed that these muscles were significantly different (P < 0.01) from each other. Chemical and rheolog-
ical data were divided into low, medium and high range groups for each variable. The results of PLSDA
showed that 305–400 nm spectra were responsible for 67% (calibration), 53% (validation), 96% (calibra-
tion) and 55% (validation) of good classification for protein and cooking loss, respectively, while 340–
540 nm spectra allowed 75% of good classification (validation samples) for fat content.

Ó 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Spectroscopic techniques have been used more and more in the
agricultural and food industries recently. It has become increas-
ingly clear that the application of spectroscopic methods to food
analysis can alleviate problems in the processing and distribution
of food and food products. Indeed, traditional analytical methods
for food components are slow, relatively expensive, time-consum-
ing, require highly skilled operators and are not easily adapted to
on-line monitoring. Thus, a number of non-invasive and non-
destructive instrumental techniques such as infrared and, more re-
cently, fluorescence have been developed for the determination of
product composition and texture. Fluorescence spectroscopy offers
several inherent advantages for the characterization of molecular
interactions and reactions (Dufour & Haertlé, 1990; Dufour, Genot,
& Heartlé, 1994; Lakowicz, 1983; Longworth, 1971; Marangoni,
1992). First, it is 100–1000 times more sensitive than absorption
spectroscopy. Second, fluorescent compounds are sensitive to their
environment, enabling characterization of conformational changes.
This technique is relatively low-cost and can be applied in both

fundamental research and in the factory as on line sensors for
monitoring food products (Karoui & Dufour, 2008).

A variety of biological tissues contain naturally occurring fluro-
phores, and emission from these compounds is called intrinsic
fluorescence (or autofluorescence). It is known that myofibrils of
muscles exhibit intrinsic fluorescence (Udenfriend, 1969). Meat
consists of components which contain relatively strong fluoro-
phores (tryptophan residues in proteins, vitamin A, riboflavin,
NADH, pyridinoline in collagen, protoporphyrin IX, lipid oxidation
products, etc.). As their excitation and emission wavelengths have
been characterized (Egelandsdal, Dingstad, Togersen, Lundby, &
Langsrud, 2005; Schneider et al., 2008; Skjervold et al., 2003;
Veberg et al., 2006), it makes meat a good product for fluorescence
studies (Egelandsdal, Wold, Sponnich, Neegard, & Hildrum, 2002;
Swatland, 1987c, 1993, 1997; Swatland & Barbut, 1991; Wold,
Lundby, & Egelandsdal, 1999). Fluorescence spectroscopy has been
considered as a tool for quantification of the composites of meat
(Wold et al., 1999), and to investigate the structural properties of
meat and cheese (Dufour & Frencia, 2001; Dufour et al., 2000;
Dufour, Devaux, Fortier, & Herbert, 2001; Egelandsdal, Kvaal, &
Isaksson, 1996; Egelandsdal et al., 2002; Karoui & Dufour, 2006;
Lopez & Dufour, 2001; Swatland, Madsen, & Nielsen, 1996). Exper-
iments on meat products have shown the ability of this technique
to determine collagen, elastin and adipose tissue (Egelandsdal
et al., 2005; Swatland, 1987a, 1987b, 1987c). Another application

0309-1740/$ - see front matter Ó 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.meatsci.2009.08.002

* Corresponding author. Address: Ministère de l’alimentation, de l’agriculture et
de la pêche, DG Enseignement et Recherche, 1ter avenue de Lowendal, 75700 Paris
07 SP, France. Tel.: +33 1 49 55 85 53.

E-mail address: eric.dufour@agriculture.gouv.fr (É. Dufour).

Meat Science 83 (2009) 672–677

Contents lists available at ScienceDirect

Meat Science

journal homepage: www.elsevier .com/ locate/meatsc i



of fluorescence was the development of a suitable method to char-
acterize meat tenderness (Dufour & Frencia, 2001). This ability of
fluorescence spectroscopy to study the characteristic changes of
structure/texture has also been reported to be of use to estimate
properties such as lipid oxidation (Wold & Mielnik, 2000) and
water-holding capacity (Brøndum et al., 2000).

However, the meat sector has no quality control methods for ra-
pid online, as well as offline, analysis of meat products. Such a tool
would allow enterprises to partition the meat market on the basis
of meat tenderness, as Australian are starting to do with the MSA
(Meat Standard Australia) system. The MSA system mainly relies
on sensory measurements which are expensive, tedious and time
consuming.

Despite the heterogeneity and anisotropy of meat, fluorescence
spectroscopy has been shown to be a valuable method for the eval-
uation of meat quality (Dufour & Frencia, 2001; Skjervold et al.,
2003). The aim of this study was to assess front-face fluorescence
spectroscopy as a non-destructive and rapid method to classify
meat samples according to their chemical and rheological charac-
teristics. Multivariate analysis techniques such as partial-least
square discriminant analysis (PLSDA) make it possible to model
the relationship between spectra and the chemical and rheological
characteristics of meat samples.

2. Materials and methods

2.1. Sample preparation

Fourteen carcasses (15 days of maturation) were taken from
Charolais breed cattle. Seven muscles (7 � 14 = 98 samples) were
dissected from each carcass including Semitendinosus (ST), Semi-

membranosus (SM), Tensor fasciae latae (TF), Rectus abdominis

(RA), Longissimus thoracis et lumborum (LT), Triceps branchii (TB)
and Infraspinatus (IS). These muscles were trimmed of external
fat, vacuum packed and stored at ÿ20 °C.

2.2. Proximate analysis

Frozen samples of the muscles were thawed at ÿ4 °C for 12 h
and ground to determine the dry matter content, fat content, colla-
gen and protein. Percentages of dry matter content (ISO 1442:1997
(F)) and fat content (Norme française 403:2001) were determined
using an oven drying procedure (105 °C for 24 h) and an extraction
procedure using petroleum ether in a Soxhlet apparatus, respec-
tively. Collagen percentage was calculated by measuring the
hydroxyproline contents and multiplying by a factor of 8 (ISO
3496:1994 (F)). Protein percentage was determined on 1 g of sam-
ple by the Kjeldahl method (ISO 937:1978 (F)). All observations
were carried out in triplicate on different samples of each muscle.

2.3. Shear force

Vacuum packed samples (approximately 10 � 10 � 4 cm)
stored at ÿ20 °C were thawed in a water bath at 10 °C for 1 h, just
before the measurement. Pieces (3 cm thick in the direction per-
pendicular to the muscle fibres) were grilled simultaneously on
both sides with an Infragrill E (Sofraca, France) until a core temper-
ature of 55 + 5 °C was reached. Cooking loss was calculated by
weighing the meat samples before and after heating.

Warner–Bratzler shear force was assessed on the grilled-meat
samples (1 � 1 � 3 cm) perpendicular to the muscle fibres direc-
tion using a Warner–Bratzler shearing device, as defined by Honi-
kel (1998). Peak load (N) and energy to rupture (J) of the muscle
sample were determined. The measurement was repeated 10 times
on different samples of the same muscle.

2.4. Fluorescence spectroscopy

Fluorescence spectra were recorded using a FluroMax-2 spec-
troflurimeter (Spex-Jobin Yvon, Longumeau, France) mounted with
a front-surface sample holder and the incidence angle of the exci-
tation radiation was set at 56o to ensure that reflected light, scat-
tered radiation and depolarisation were minimized. For surface
measurements, meat samples were mounted between two quartz
slides. Emission spectra in the range 305–400 nm, 410–700 nm
and 340–540 nm were recorded with excitation wavelengths of
290, 382 and 322 nm, respectively: these mainly addressed the
fluorescence of tryptophan, pyridinoline/riboflavin and vitamin A
molecules (Skjervold et al., 2003). But due to the numerous fluoro-
phores present in meat, the recorded spectra were most probably
not from a unique fluorophore. For each muscle sample, two spec-
tra were recorded on different samples.

2.5. Pre-treatment of the spectra and statistical analysis

In order to reduce scattering effects, the fluorescence spectra
were normalized by reducing the area under each spectrum to a
value of 1 according to Bertrand and Scotter (1992). Thus, mainly
the shifts of the maximum emission and the width changes of
the spectra, retaining most of the structural information, were
considered.

2.6. Analysis of variance (ANOVA)

Statistical analysis was carried out using STATISTICA software.
Significance differences of chemical and rheological parameters
among the seven bovine muscle samples were determined by anal-
ysis of variance (ANOVA) using the least square difference method
(Fisher test). Differences were considered significant at the P < 0.01
level.

2.7. Discriminant analysis (PLSDA)

Partial-least square discriminant analysis (PLSDA) with valida-
tion were performed on normalized spectral data in MATLAB
(The Mathworks Inc., Natic, MA, USA) using the ‘Saisir’ package
available at the website: http://easy-chemometrics.fr. The aim of
this technique is to predict the membership of an individual to a
qualitative group defined as a preliminary (Vigneau, Qannari, Jail-
lais, Mazerolles, & Bertrand, 2006). For each chemical and rheolog-
ical parameter, samples were classified into three groups, i.e., low,
medium and high. The PLSDA assesses new synthetic variables
called loading factors, which are linear combinations of the vari-
ables and allows a better separation of the centre of gravity of
the considered groups. The method allows the individual samples
to be reallocated within the various groups. Comparison of the pre-
dicted groups to the real group is an indicator of the quality of the
discrimination and it is valued as the percentage of correct
classifications. The spectral collection was divided into two groups:
two-thirds of the investigated muscle samples were used for the
calibration set and one-third for the validation set.

3. Results and discussion

3.1. Chemical and rheological parameters

The results of the chemical and rheologial analysis including
proximate analysis (fat content, dry matter content, collagen and
protein) and Warner–Bratzler shear force measurements (peak
force, energy to rupture and cooking loss) of the seven beef mus-
cles, i.e., Semitendinosus (ST), Semimembranosus (SM), Tensor fasciae
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latae (TF), Rectus abdominis (RA), Longissimus thoracis et lumborum

(LT), Triceps branchii (TB), Infraspinatus (IS), taken from 14 carcasses
are reported in Table 1.

The results showed a wide range of variation for chemical and
rheological parameters for a given muscle. For example, fat con-
tents of IS muscles had a standard error of 2.45, while the standard
errors for peak load varied from 12.11 to 17.68.

3.2. Proximate analysis

3.2.1. Dry matter content

Results from analysis of variance (ANOVA) using P < 0.01
showed that TF muscles contained the highest percentage of dry
matter among the muscles, whereas the round muscles (ST and
SM) contained the lowest dry matter percentages.

3.2.2. Fat content

As previously reported by Stetzer, Cadwallader, Singh, Mckeith,
and Brewer (2008), fat contents were the highest in IS muscles (Ta-
ble 1). The results were also in agreement with Brackebusch,
McKeith, Carr, and McLaren (1991): among 16 muscles used for
their studies, fat contents for five muscles (RA, IS, ST, SM and TB)
were similar to our results. Among these five muscles they found
that RA and IS contained the highest levels of fat while ST and
SM contained the lowest. Similar results were found in the present
work, but the fat percentages reported in their study were derived
using a warm chloroform:methanol extraction. So their fat con-
tents derived using this method would be expected to be higher
than values obtained by ether extraction (Marchello, Dryden, &
Ray, 1968).

Variation in the composition of beef muscles is well established.
Von Seggern, Calkins, Johnsen, Brickler, and Gwartney (2005)
showed that the fat content of meat increased as water content de-
creased. Similar results are found in the present studies, where
muscles containing less fat (ST, SM) had higher dry matter con-
tents, however, TF muscles containing the highest amounts of fat
were lower in dry matter.

3.2.3. Collagen

Collagen contents were significantly higher in TF, TB and IS
muscles than in SM and LT muscles and agreed with Torrescano,
Sanchez-Escalante, Gimenez, Roncales, and Beltran (2003). These
results are also in agreement with Von Seggern et al. (2005) who
showed that chuck muscles (IS and TB) contained more collagen
compared to round muscles (ST and SM). Stolowski et al. (2006)
used seven major beef muscles from three Angus and Brahman
breed crosses and showed that TB muscle contained significantly
(p < 0.05) higher amounts of total collagen (mg/g) than SM and
LT, as found in the present study.

3.2.4. Protein

As reported by Boles and Shand (2008) and Brackebusch et al.
(1991), protein contents were significantly higher in ST and SM
muscles than in IS muscles. Protein contents for the muscles, ex-
cept TB, were inversely related to fat content.

3.3. Warner–Bratzler shear force measurement

Peak force values showed that ST muscles were significantly the
toughest muscle followed by TB, while LT and IS muscles were the
most tender among the seven muscles. In this study, IS muscles
which contained the highest fat content (4.83%) had the lowest val-
ues for peak force (47.26 N). These findings are similar to Below,
Brooks, McKenna, and Savell (2003). These authors also showed
that muscles with high fat contents were usually tender. The re-
sults are in agreement with Torrescano et al. (2003), who found
that TB and SM were the toughest muscle although LT was most
tender among the 14 bovine muscles studied by them. Energy re-
quired to rupture the muscle appeared to be higher in ST, SM, TF
RA and TB muscles than in LT and IS.

It also appeared that TF and IS muscles had the highest cooking
losses, whereas RA muscles had lower cooking losses.

3.4. Fluorescence spectroscopy

3.4.1. Characteristics of spectra obtained from fluorescence

spectroscopy

Results of fluorescence spectroscopy of three different muscles
are shown in Fig. 1a–c. It can be seen that the spectra were differ-
ent between muscles.

The fluorescence emission spectra recorded following excitation
at 290 nm showed different shapes and intensities among the mus-
cles with a maximum at about 330–333 nm, mainly originating
from tryptophan residues in proteins (Dufour, Dalgalarrondo, &
Adam, 1998; Dufour, Frencia, & Kane, 2003; Skjervold et al.,
2003). This demonstrates that the tryptophan spectra of bovine
muscles are fingerprints that allow their identification between
different muscles. These results are in accord with Dufour and
Frencia (2001). In their studies they used two muscles (LT and IS)
and recorded the emission spectra by fixing the excitation wave-
length at 290 nm. They demonstrated that it is possible to differen-
tiate between these muscles from their emission spectra. They
suggested that spectra were fingerprints of proteins present in
the bovine muscles.

The origin of emission spectra scanned from 410 to 700 nmwith
an excitation wavelength of 382 nm, was more difficult to assign to
a given fluorophore. These spectra showed a maximum intensity at
about 465–473 nm, with a shoulder at about 480–483 nm. Another
less intense peak was observed at about 635–645 nmwith a shoul-
der at 597–600 nm. Previous reports by Egelandsdal et al. (2002)
and Skjervold et al. (2003) have shown 380 nm to be the best exci-
tation wavelength for quantification of connective tissue: in this

Table 1

Chemical and rheological parameters (Mean values and standard error) of seven beef musclesa.

Beef muscles n Dry matter (%) Fat content (%) Collagen (%) Protein (%) Peak load (N) Energy to rupture (J) Cooking loss (%)

ST 24 26.16b + 1.09 1.6d + 0.70 0.78ab + 0.16 23.86a + 1.59 81.20a + 12.13 0.53a + 0.09 33.18ab + 3.41
SM 22 26.07b + 0.78 1.14d + 0.59 0.66b + 0.14 23.88a + 0.59 70.44bc + 14.78 0.53a + 0.11 33.61ab + 3.41
TF 24 27.43a + 1.78 3.71ab + 2.02 0.87a + 0.28 22.79bc + 0.90 72.95abc + 13.13 0.52a + 0.08 34.50a + 2.08
RA 24 26.83ab + 1.89 3.40bc + 1.92 0.76ab + 0.20 23.23ab + 0.87 64.75c + 13.65 0.49a + 0.12 26.58c + 2.69
LT 14 27.12ab + 1.50 2.34cd + 1.23 0.64b + 0.22 23.55ab + 0.78 46.03d + 12.11 0.35b + 0.09 31.53b + 1.45
TB 26 26.43ab + 1.09 3.08bc + 1.45 0.85a + 0.24 22.30c + 1.12 77.88ab + 17.68 0.53a + 0.12 32.75ab + 2.32
IS 18 26.87ab + 2.08 4.83a + 2.45 0.87a + 0.26 20.91d + 0.95 47.26d + 13.57 0.34b + 0.09 34.43a + 2.95

abcdMeans chemical and rheological parameters within a column with the same superscripts are not significantly different (P < 0.01).
a Semitendinosus (ST), Semimembranosus (SM), Tensor fasciae latae (TF), Rectus abdominis (RA), Longissimus thoracis et lumborum (LT), Triceps branchii (TB), and Infraspinatus

(IS).
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case, the maximum emission was observed at about 480 nm.
Excitation at 380 nm is also used to investigate riboflavin in dairy
products (Karoui & Dufour, 2006). It appears that cheeses present
intense fluorescence at about 520 nm following excitation at
380 nm. Considering the spectra (Fig. 1b) in this study, the fluores-
cence of collagen was the main contributor, but riboflavin also
contributed. The less intense peak observed at about 635–645 nm
with a shoulder at 597–600 nm might be due to protoporphyrin
IX, except that the usual wavelength used for excitation of this
fluorophore is 420 nm (Schneider et al., 2008). But protoporphyrin
IX may be slightly excited at 380 nm due to the large width of the
fluorophore excitation spectrum.

Emission spectra from 340 to 540 nm with excitation measured
at 322 nm showed two peaks: the weakest was located at 380–
395 nm and the largest one at about 465–468 nm. Similar peaks
assigned to vitamin A were found by Skjervold et al. (2003) in
red meat and Veberg et al. (2006) in white meat. Dufour et al.
(2000) found similar peaks for vitamin A fluorescence in cheese.

3.4.2. Classification of muscles according to their chemical and

rheological characteristics

For discriminant analysis, the meat samples were divided into
three groups (low, medium and high) according to the chemical
and rheological data (Table 2). Indeed, the groups were not built
according to the muscle type since the samples of a given muscle
showed a wide range of variation for the considered chemical
and rheological parameter (Table 1). Considering TF muscle, one
sample contained 1.93% of fat, whereas others contained up to
5% of fat. So, regarding their fat content, the 24 TF data can be dis-
tributed into the three groups: low (8 samples), medium (10 sam-
ples) and high (6 samples). Similarly, the 18 IS data are divided into
low (4 samples), medium (6 samples) and high (8 samples) groups
according to their fat content.

PLSDA was applied on normalized fluorescence spectral data
sets (calibration and validation data sets) recorded in the 305–
400 nm, 340–540 nm and 410–700 nm ranges in order to assign
a given meat sample to a chemical or rheological group. The spec-
tral collections were divided into two groups: two-thirds of the
investigated muscle samples were used for the calibration set
and one-third for the validation set.

Calibration and validation results of discriminant analysis
(PLSDA) carried out on 305–400 nm fluorescence spectra are re-
ported in Table 3. The results showed that five factors of PLSDA
gave 63% of good classification for dry matter content of muscles.
In Table 1, it appears that TF samples had higher dry matter con-
tents than LT and SM. The differences between these three muscles
were also observed in the 305–400 nm fluorescence spectra
(Fig. 1a): TF spectra showed higher fluorescence intensity than LT
and SM. PLSDA with four factors showed 53% and 55% of good clas-
sification (validation set) for protein content and peak load, respec-
tively. This is discussed by Damez and Clerjon (2008), who
reviewed the use of fluorescence spectroscopy in meat and said
that tryptophan is an important intrinsic fluorescent that can be
used to assess the nature of the tryptophan microenvironment
and that the information retained in tryptophan spectra can be cor-
related with meat tenderness. In case of cooking loss, 55% of good
classification (validation set) can be achieved using 10 factors of
PLSDA.

Table 2

Division of the considered samples into three groupsa according to chemical and
rheological data.

Physico-chemical parameters Code n Range

Dry matter % L 49 24.5–25.9
M 74 26.0–27.9
H 29 28.0–31.4

Fat content % L 82 0.0–2.5
M 48 2.6–4.9
H 22 5.0–9.2

Collagen % L 42 0.22–0.68
M 85 0.69–0.99
H 25 1.00–1.50

Protein % L 23 18.7–21.5
M 57 21.6–23.2
H 72 23.3–25.0

Peak Load (N) L 34 22–52
M 64 53–75
H 56 76–100

Energy to rupture (J) L 37 0.20–0.39
M 69 0.40–0.54
H 46 0.55–0.77

Cooking loss % L 36 22.8–30.4
M 82 30.5–31.2
H 34 31.3–34.9

a Low (L) medium (M), high (H), number of samples in a given group (n), lowest
and highest values used to define a given group (range).
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Fig. 1. Fluorescence spectra of three muscles of meat. (A) Emission spectra recorded
between 305 and 400 nm with excitation wavelength set at 290 nm, (B) emission
spectra recorded between 410 and 700 nm with excitation wavelength set at
382 nm, and (C) emission spectra recorded between 340 and 540 nm with
excitation wavelength set at 322 nm. Tensor fasciae latae (� � �); Longissimus
thoracis et lumborum (- - -); and Semimembranosus (___).

A. Sahar et al. /Meat Science 83 (2009) 672–677 675



The results of discriminant analysis (PLSDA) applied on 410–
700 nm fluorescence spectra are reported in Table 4. It can be seen
that PLSDA with 10 factors showed 63%, 55% and 57% of good clas-
sification (validation set) for fat content, protein content and peak
load, respectively.

The results of discriminant analysis (PLSDA) carried out on
340–540 nm fluorescence spectra showed that PLSDA using seven
factors made it possible to obtain 75% of good classification (vali-
dation set) for muscle fat contents (Table 5). It proved that emis-
sion spectra recorded in the 340–540 nm range are good
indicators of fat contents in bovine muscles. In addition, PLSDA
using 10 factors demonstrated 59% and 53% of good classification

(validation sets) for dry matter contents and energy to rupture,
respectively.

Front-face fluorescence spectroscopy has the potential to dra-
matically reduce analytical time and cost of traditional measure-
ments or new methods, such as MSA systems, used for the
evaluation of meat quality. However, the robustness of the models
for classification has to be improved for several variables. It will be
improved by testing on a larger set of samples and by increasing
the database. In addition, a larger database will allow us to expand
the three groups (low, medium and high) for each type of muscle.
These improvements should increase the robustness of the
predictions.

Table 3

Results for calibration and validation sets of partial-least square discriminant analysis (PLSDA) carried out on 305–400 nm fluorescence spectra (rows: observed classifications;
columns: predicted classifications).

Parameters No. of PLSDA factors Groups Calibration Validation

L M H % of good classification L M H % of good classification

Dry matter content 5 L 27 3 3 82 9 5 2 56
M 14 29 6 59 4 17 4 68
H 4 3 12 63 1 3 6 60

Protein 4 L 12 2 1 80 5 2 1 63
M 7 21 10 55 4 9 6 47
H 3 10 35 73 2 9 13 54

Cooking loss 10 L 24 0 0 100 6 4 2 50
M 2 52 1 95 3 18 6 67
H 0 1 21 95 2 6 4 33

Peak load 4 L 13 6 2 62 6 5 0 55
M 7 26 10 60 5 10 6 48
H 7 7 23 62 2 5 12 63

Low (L), medium (M), high (H).

Table 4

Results for calibration and validation sets of partial-least square discriminant analysis (PLSDA) carried out on 410–700 nm fluorescence spectra (rows: observed classifications;
columns: predicted classifications).

Parameters No. of PLSDA factors Groups Calibration Validation

L M H % of good classification L M H % of good classification

Fat contents 10 L 39 7 8 72 21 4 3 75
M 8 20 4 63 4 8 4 50
H 4 2 9 60 3 1 3 43

Protein 10 L 8 6 1 53 5 2 1 63
M 4 24 10 63 3 10 6 53
H 5 12 31 65 4 7 13 54

Peak load 10 L 12 2 7 57 5 5 1 45
M 4 27 12 63 3 12 6 57
H 7 8 22 59 2 5 12 63

Low (L), medium (M), high (H).

Table 5

Results for calibration and validation sets of partial-least square discriminant analysis (PLSDA) carried out on 340–540 nm fluorescence spectra (rows: observed classifications;
columns: predicted classifications).

Parameters No. of PLSDA
factors

Groups Calibration Validation

L M H % of good classification L M H % of good classification

Fat contents 7 L 40 8 6 74 23 3 2 82
M 6 19 7 59 5 9 2 56
H 0 4 11 73 0 1 6 86

Dry matter 10 L 23 4 6 70 10 5 1 63
M 8 37 4 76 8 12 5 48
H 0 3 16 84 0 2 8 80

Energy to rupture 10 L 16 4 4 67 9 3 1 69
M 5 32 9 70 6 9 8 39
H 5 3 23 74 1 5 9 60

Low (L), medium (M), high (H).
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4. Conclusion

Fluorescence spectroscopy seems to be a valuable method for
discrimination among different meat samples according to their
quality. In the present study, the results of partial-least square dis-
criminant analysis (PLSDA) applied on 305–400 nm fluorescence
spectra showed 67% and 96% (53% and 55% for validation sets) of
good classification for protein content and dry matter content,
respectively. Good results were also observed using 340–540 nm
fluorescence spectra.

The recent development of very small spectrofluorimeters, as
well as of fibre optic probes and LED emitting in the UV range, is
leading to the development of integrated apparatus (Karoui & Du-
four, 2008). The most attractive advantages of these laptop spec-
trofluorimeters are that no preliminary sample preparation is
needed prior to measurement and results are obtained rapidly (a
couple of seconds) compared with conventional techniques. Thus,
front-face fluorescence in conjunction with chemometric tools
has great potential to become a useful quality control method in
rapid online, as well as offline, analysis of meat products.
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Introduction 

La spectroscopie de fluorescence donne des informations sur la présence de fluorophores et sur leur environnement 
dans les échantillons. Le spectre de fluorescence d’un produit est caractéristique et spécifique de ce produit et constitue 
une empreinte. Comme cela est pratiqué depuis longtemps dans le domaine de la spectroscopie infrarouge, il est 
envisageable d'appliquer des méthodes d'analyse statistique multidimensionnelle aux spectres de fluorescence pour 
extraire l’information pertinente et développer des méthodes de prédiction de la qualité des produits. Le principal 
objectif de cette étude est d’évaluer le potentiel de la spectroscopie de fluorescence pour identifier différents muscles et 
pour prédire certains de leurs paramètres physico-chimiques. 

Matériel et méthodes 

Echantillonnage : Soixante six échantillons provenant de 14 carcasses (15 jours de maturation) de génisses de race 
‘charolaise’ sur lesquelles ont été prélevés trois muscles - ‘bavette de flanchet’ (‘B’, n=24), ‘rond de gîte’ (‘R’, n=24), 
et ‘paleron’ (‘P’, n=18), ont été utilisés pour cette étude. 
Physico-chimie : Les matières sèches des échantillons ont été déterminées par la méthode de référence (ISO 1442), les 
matières grasses en utilisant la méthode de Soxhlet (norme française V 04-403), les protéines au  moyen de la méthode 
de Kjeldhal (ISO 937) et le collagène en mesurant l’hyroxyproline (ISO 3496). Les mesures ont été répétées trois fois 
sur des éprouvettes différentes pour chaque échantillon de muscle. Les mesures de texture ont été réalisées par la 
méthode de cisaillement selon la procédure décrite par Honikel [1]. Les paramètres suivants ont été déterminés, perte de 
poids (%), force maximale (N), déplacement à la force maximale (mm), énergie à la rupture (J) et  contrainte maximale 
de cisaillement (N/cm2). Les mesures ont été répétées 10 fois sur des éprouvettes différentes pour chaque échantillon de 
muscle. 
Spectroscopie de fluorescence : Les spectres de fluorescence ont été enregistrés au moyen d’un spectrofluorimètre 
FluroMax-2 (Spex-Jobin Yves, Longjumeau, France). Les spectres d'émission de résidus tryptophane des protéines 
(305-400 nm), de la vitamine A (340-540 nm) et de la riboflavine (410-700 nm) ont été enregistrés après excitation à 
des longueurs d'onde fixées à 290, 322 et 382 nm, respectivement. Les mesures ont été répétées deux fois sur des 
éprouvettes différentes pour chaque échantillon de muscle. 
Traitement statistique: Les jeux de données ont été évaluées par des méthodes chimiométriques telles la PLSDA – une 
méthode discriminante, et la PLS avec cross validation - une méthode prédictive. Le logiciel MatLab (The Mathworks 
Inc., Natic, MA, USA) a été utilise et les routines mises en oeuvre sont accessibles à l’adresse suivante : http://easy-
chemometrics.fr. 

Résultats et discussion  

Les résultats (moyenne pour chaque muscle) des analyses physico-chimique sont présentés tableau 1. Le paleron (P) est 
caractérisé par la teneur en matières grasses (4,83%) la plus élevée, la quantité de protéines (20,91%) la plus faible, une 
force maximale égale à 47,26N, une énergie à la rupture de 0,34J et une valeur de cisaillement de 39,53N/cm2. Au 
contraire, le rond de gîte muscle (R) présente la plus faible valeur en matières grasses (1,6%) et les valeurs les plus 
élevées pour les protéines (23,86%), la force maximale (81,2N), l’énergie à la rupture (0,53J) et le cisaillement (69,06 
N/cm2). Les données physico-chimiques diffèrent d’un muscle à l’autre permettant d’envisager une discrimination. 

Muscle n
Matières 
grasses 

%  

Matières 
sèche 

%  

Collagène
% 

Protéines
% 

Perte de 
poids (%)

Force 
maxima

le (N) 

Déplacement à 
force maximale 

(mm) 

Energie à  
la rupture 

(J) 

Cisaillement 
(N/cm²) 

R 24 1,60 26,16 0,78 23,86 33,18 81,20 19,07 0,53 69,06 
B 24 3,40 26,83 0,76 23,23 26,58 64,75 18,05 0,49 54,75 

P 18 4,83 26,87 0,87 20,91 34,43 47,26 18,92 0,34 39,53 
Tableau 1 : Résultats des analyses physico-chimiques réalisées sur les trois muscles : R= rond de gîte, B= bavette de 
flanchet, P= paleron (n=nombres d’échantillons). 



Les spectres d'émission de résidus tryptophane des protéines montrent des maxima à environ 330-332 nm (Figure 1). 
Par ailleurs les spectres de la riboflavine sont caractérisés par un maximum à 468-470 nm, ainsi que par un autre pic de 
moindre intensité à environ 645 nm qui présente un épaulement à environ 598 nm (Figure 1). Les allures de ce 
deuxième pic et de l'épaulement varient d’un échantillon à l’autre. Enfin, les spectres de la vitamine A montrent deux 
pics localisés à 467-469 nm et à 380-395 nm (Figure 1). 
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Les résultats des analyses discriminantes (PLSDA) 
réalisées sur les données montrent des pourcentages de 
bonne classification de respectivement 100%, 97%, 
91% et 95% pour les spectres du tryptophane, les 
spectres de la riboflavine, les spectres de la vitamine A 
et les paramètres physico-chimiques. 
Les résultats de prédiction des paramètres physico-
chimiques au moyen de la régression PLS avec cross 
validation appliquées sur les données de calibration des 
trois muscles R+B+P montrent une relativement bonne 
prédiction du collagène (R2C=0,91) à partir des 
spectres des tryptophanes, une  prédiction relativement 
correcte de l’énergie à la rupture (R2C=0,55) et de la 
matière sèche (R2C=0,51) à partir, respectivement, des 
spectres de la riboflavine et de la vitamine A. Par 
contre les R²V pour ces paramètres présentent des 
valeurs très faibles (respectivement R²V=0,32, 0,15 et 
0,26 pour les trois paramètres) ; indiquant la faible 
robustesse des modèles de prédiction (Tableau 2). 

Muscle
Tryptophane et collagène Riboflavine et énergie à la rupture Vitamine A et matière sèche 

n F R2C RMSEC R2V RMSEV F R2C RMSEC R2V RMSEV F R2C RMSEC R2V RMSEV

R+B+P 66 6 0,91 0,06 0,32 0,20 5 0,55 0,09 0,15 0,13 7 0,51 1,20 0,26 1,47 

R 24 6 1 0,01 0,64 0,14 7 0,93 0,02 0,57 0,07 7 0,96 0,21 0,94 0,72 

B 24 4 0,97 0,04 0,57 0,09 5 0,85 0,04 0,39 0,07 6 0,88 0,75 0,79 1,23 

P 18 3 0,99 0,04 0,71 0,44 2 0,86 0,04 0,57 0,17 6 0,97 0,28 0,82 4,28 

Tableau 2 : Régression PLS réalisée sur : (R+B+P) trois muscles ensemble et un seul muscle, R ‘rond de gîte’ B 
‘bavette de flanchet’ et P ‘paleron’. n= nombres des échantillons, F= facteur de PLS, R2C= Coefficient de détermination 
de calibration, RMSEC=Root mean square error of calibration, R2V= Coefficient de détermination de validation, 
RMSEV=Root mean square error of validation 

Les régressions PLS ont également été réalisées sur des jeux de données de calibration et de validation ne renfermant 
que les données d’un seul muscle (R, B ou P). De meilleures prédictions ont été trouvées pour les taux de collagène de 
chacun des muscles (R, R²C=1 & R²V=0,64, B, R²C=0,97 & R²V=0,57, P, R²C=0,99 & R²V=0,71) à partir des spectres 
des tryptophanes. Enfin, les spectres de la riboflavine et de la vitamine A permettent de relativement bien prédire 
respectivement l’énergie à la rupture (R, R²C=0,93 & R²V=0,57, B, R²C=0,85 & R²V=0,39, P, R²C=0,86 & R²V=0,57) 
et la matière sèche (R, R²C=0,96 & R²V=0,94, B, R²C=0,88 & R²V=0,79, P, R²C=0,97 & R²V=0,82). 

Conclusion 

La spectroscopie de fluorescence frontale couplée aux méthodes chimiométriques présente un potentiel important dans 
le développement de méthodes rapides et non destructives pour l’identification et la caractérisation des muscles. Cette 
méthode apparaît comme un bon outil pour l'identification des différents muscles ; en particulier, les spectres des 
tryptophanes conduisant à 100% de bonne classification.  
Par ailleurs, la PLS appliquée sur les données spectrales de calibration des trois muscles R+B+P donne en général de 
bons R²C, alors que les données de validation conduisent à des R²V généralement faibles ; suggérant des modèles peu 
robustes. A contrario,  la PLS appliquée sur les données spectrales de calibration et de validation d’un seul muscle (R 
ou B ou P) donne en général de bons R²C et de bons R²V ; démontrant la robustesse des modèles de prédiction. Les 
différences structurales caractérisant les 3 muscles étudiés ne permettent pas de développer un modèle général. Par 
contre la constitution de banques de données spectrales par muscle est une piste que nous approfondissons en vue de 
développer des applications dans le domaine de la mesure rapide et non destructive de la qualité de la viande. 
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Figure 1 : Spectres d’émission de fluorescence de la viande :   
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A. 
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Synchronous Front-Face Fluorescence
Spectroscopy Coupled with Parallel Factors
(PARAFAC) Analysis to Study the Effects
of Cooking Time on Meat
AMNA SAHAR, TAHAR BOUBELLOUTA, STÉPHANE PORTANGUEN, ALAIN KONDJOYAN, AND ÉRIC DUFOUR

ABSTRACT: In this study, the potential of synchronous front-face fluorescence coupled with chemometrics has
been investigated for the analysis of cooked meat. Bovine meat samples (thin slices of 5 cm diameter) taken from
Longissimus dorsi muscle were cooked at 237 ◦C for 0, 1, 2, 5, 7, and 10 min under control conditions. Synchronous
front-face fluorescence spectra were collected on meat samples in the excitation wavelength range of 250 to 550 nm
using offsets (1λ) of 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, and 160 nm between excitation
and emission wavelengths. The synchronous fluorescence landscape containing 360 spectra was analyzed using
PARAFAC. The best PARAFAC model presented 2 components since core consistency values for the first 2 compo-
nents were 100% and the explained variance was 67.98%. The loading profiles of 1st and 2nd components had an
optimal 1λ of 70 and 40 nm, respectively, allowing to determine the excitation (exc.) and emission (em.) maxima
wavelengths of 1st (fluorescence band at about exc.: 340 to 400/em.: 410 to 470 nm, and peak at exc.: 468/em.: 538
nm) and 2nd (exc.: 294 nm/em.: 334 nm) components. As the loading profile of the 1st component of PARAFAC was
assigned to Maillard-reaction products formed during cooking, the profile of the 2nd component corresponded with
the fluorescence characteristics of tryptophan residues in proteins. Loadings and scores of the PARAFAC model de-
veloped from the synchronous fluorescence spectra enabled to get information regarding the changes occurring in
meat fluorophores during cooking of meat at 237 ◦C from 0 to 10 min.

Keywords: cooking time, meat, PARAFAC, synchronous fluorescence spectroscopy

Introduction

Meat is a complex mixture of chemical constituents and rich

in proteins, making it susceptible to denaturation of pro-

teins and formation of Maillard-reaction compounds during ther-

mal treatments. Cooking of meat products may also generate low

levels of mutagenic/carcinogenic heterocyclic amines because of

some naturally present compounds like creatine, free amino acids,

and monosaccharides, affecting the nutritional quality of meat.

There are growing needs to control the quality of food prod-

ucts in minimum possible time, which led to replace the time con-

suming and expensive conventional methods with some reliable,

rapid, and less expensive techniques. In this regard, fluorescence

spectroscopy seems to be a good candidate due to its high sen-

sitivity to physicochemical changes occurring in food (Rizkallah

and others 2008). When meat is subjected to thermal treatment,

many changes occur in meat like denaturation of protein (tryp-

tophan residues in proteins), degradation of some fluorophores

(tryptophan residues in proteins, vitamins), and development of

some new fluorophores (Maillard-reaction products, heterocyclic

amines), which consequently changes the fluorescence signals of

MS 20090489 Submitted 5/31/2009, Accepted 8/14/2009. Authors Sahar,
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meat. Front-face fluorescence spectroscopy has already been used

to evaluate the progress of Maillard reaction in milk (Birlouez-

Aragon and others 2001; Kulmyrzaev and Dufour 2002), seeds (Yaa-

coub and others 2009), and infant formulas (Birlouez-Aragon and

others 2005).

Synchronous fluorescence spectroscopy (SFS) has been proved

to be a very useful method for the analysis of complex food matri-

ces, for authenticity and detailed chemical characterization (Chris-

tensen and others 2006). In SFS the excitation wavelength, −λexc,

and the emission wavelength, −λem, are scanned synchronously

with a constant wavelength interval (1λ = λem − λexc), which

makes it possible to narrow the spectral bands and get information

on several fluorophores in a given spectrum.

Such kind of 3-dimensional (3D) data set comprises of exci-

tation and emission matrix (samples × offsets [1λ] ×excitation

wavelengths) can be analysed using a decomposition model like

parallel factors analysis or PARAFAC, which decompose the data set

into scores and loadings, enabling a more thorough interpretation

of data.

Recently, 3-way fluorescence spectroscopy combined with

PARAFAC modelling was successfully applied for quantitative and

qualitative analysis of complex mixtures and food products (Niko-

lajsen and others 2003; Rodriguez-Cuesta and others 2003; Trevisan

and Poppi 2003; Andersen and others 2005; Ni and others 2006;

Diez and others 2007). Ni and others (2008b) used synchronous flu-

orescence and UV–VIS spectroscopy to study the interactions be-

tween the tetracycline antibiotic, aluminium ions, and DNA with

E534 JOURNAL OF FOOD SCIENCE—Vol. 74, Nr. 9, 2009 C© 2009 Institute of Food Technologists R©
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the aid of the Methylene Blue dye probe. These researchers had

used PARAFAC for the decomposition of the 3-way data set. In

other research, Ni and others (2008a) studied the interactions of

Isoprocarb and sodium 2-isopropylphenate with bovine serum al-

bumin. In their study, 3D plots of synchronous spectra were used,

and the multivariate statistical technique, PARAFAC, was applied to

decompose this 3-way data array.

Such multi-way models have been applied to auto-fluorescence

landscapes of food systems as well, like sugar (Bro 1999), meat

(Moller and others 2003), fish oil (Pedersen and others 2002),

milk (Boubellouta and Dufour 2008), yogurt (Christensen and oth-

ers 2005), cheese (Christensen and others 2003), wines (Airado-

Rodriguez and others 2009), and edible oils (Guimet and others

2004; Sikorska and others 2004).

The aim of this study was to show the potential of synchronous

fluorescence spectroscopy coupled with PARAFAC to detect the

main fluorescent compounds present in meat and to determine the

effects of cooking kinetics on these compounds.

Materials and Methods

Cooking of meat samples
Longissimus thoracis muscle was taken from the carcass of an

18-mo-old heifer immediately after slaughter. Meat samples (thin

slices of 5 cm diameter) were cooked between 218 and 245 ◦C (av-

erage = 237 ◦C) for 1, 2, 5, 7, and 10 min under control condi-

tions. Jets of superheated steam mixed with air were applied on

very thin slices (1 mm to 2 mm) of meat. Samples (5 cm diameter)

were prepared in quadruplicate for each time of the cooking kinetic.

Kondjoyan and Portanguen (2008) gave a detailed description of the

experimental apparatus used for cooking, with functional analysis.

The samples were vacuum packed and stored at 4 ◦C for further

analysis.

Synchronous fluorescence spectra
Synchronous fluorescence spectra were collected in the 250 to

550 nm excitation wavelength range using offsets of 20, 30, 40, 50,

60, 70, 80, 90, 100, 110, 120, 130, 140, 150, and 160 nm between

excitation and emission monochromators. Fluorescence spectra

were recorded using a FluoroMax-2 spectrofluorimeter (Spex-Jobin

Yvon, Longjumeau, France) mounted with a front-surface sample-

holder and the incidence angle of the excitation radiation was set

at 56◦ to ensure that reflected light, scattered radiation, and depo-

larization phenomena were minimized. The spectra were collected

at room temperature. The experiment was repeated for 4 times for

each cooking time, so a total of 360 synchronous fluorescence spec-

tra (6 different times of cooking × 4 repetitions × 15 offsets) were

recorded.

Chemometrics
Principal component analysis (PCA). PCA was applied to the

synchronous spectra to investigate differences in the spectra. This

statistical multivariate treatment makes it possible to draw similar-

ity maps of the samples showing differences/similarities between

the spectra, and to get spectral patterns (that can be interpreted

like spectra) showing the most discriminant wavelengths (Dufour

and Riaublanc 1997b; Herbert and others 1999; Dufour and others

2000).

Parallel factor analysis (PARAFAC). PARAFAC is a chemomet-

ric decomposition method, and is a generalization of principal

component analysis (PCA) to higher-order arrays (Burdick 1995).

The PARAFAC Toolbox (Bro 1997) used in this study is avail-

able online at the following address: http://www.models.kvl.dk.

PARAFAC decomposes N-order array (N ≥ 3) into a sum of the

outer products of N loading components (Rutledge and Bouver-

esse 2007). The spectral data were arranged in a 3-way array with

samples on the 1st mode, 1λ on the 2nd mode and excitation wave-

length on the 3rd mode. The number of PARAFAC components nec-

essary to reconstruct the data is an important parameter (Rutledge

and Bouveresse 2007). Several methods can be used to determine

the appropriate number of PARAFAC components (Louwerse and

others 1999; Smilde and others 2004). In this study a diagnostic

known as core consistency diagnostic or CORCONDIA has been

used (Bro and Kiers 2003). The core consistency diagnostic is of-

ten used as a measure of percentage of agreement of the PARAFAC

models with ideal trilinearity and guides the choice of appropri-

ate number of PARAFAC components to be considered (Bro 1997).

When the core consistency drops from a high value (above about

60%) to a low value (below about 50%), it indicates that an ap-

propriate number of components has been attained (Moberg and

others 2001). In addition, the nonnegativity has been applied in

3 modes to build the components of the models. Imposing non-

negativity constraint on decomposition model parameters of flu-

orescence 3-way spectral data is common practice since both the

spectral intensities and fluorophore concentrations are known to

be positive (Bro and others 2002). Chemometric analyses were

performed using MATLAB (The Mathworks Inc., Natick, Mass.,

U.S.A.).

Results and Discussion

Synchronous spectra recorded on meat samples
The 3D landscapes were constructed in such a way that x-

axis represents the synchronous excitation wavelength (nm), y-axis

shows the wavelength interval (1λ), while z-axis are plotted by link-

ing points of equal fluorescence intensity. The 3D plot obtained

from raw meat sample (Figure 1A) showed a prominent peak at

about 295 nm for 1λ = 40 nm, originating from the fluorescence of

protein tryptophan residues (Boubellouta and Dufour 2008). How-

ever a modification of intense peaks can be observed in 3D land-

scape of meat sample, which were cooked at 237 ◦C for 10 min

(Figure 1B). Here the peak at about 290 nm, which was prominent

in the raw meat sample became less intense, while a new intense

peak emerged at about 470 nm and presented a maximum of flu-

orescence intensity for 1λ = 70 nm. This peak appeared gradually

when the meat samples were cooked from 1 to 10 min.

Synchronous spectra for 1λ = 60 nm recorded for the meat

samples cooked at 237 ◦C for 0, 2, and 7 min showed differences

in the shapes of the spectra, that is, when the intensity of the

band centered at about 290 nm decreased, the intensity of the band

in the 350 to 550 nm region increased (Figure 1C). The disap-

pearing band in the 290 nm region corresponded to the degra-

dation/modification of tryptophan residues with the increasing

cooking time (Gatellier and others 2008). At the opposite, the in-

crease with cooking time of the band centered in the 350 to 550 nm

region was associated with the formation of Maillard compounds

(Estévez and others 2008; Yaacoub and others 2009).

The synchronous fluorescence spectra recorded at 1λ = 60 nm

for the meat samples cooked for 2 min showed an intense peak

at about 295 nm (maximum emission at 355 nm), which is not

prominent in other spectra recorded for 1λ = 120 and 160 nm

(Figure 2A). Another pattern of synchronous fluorescence spectra

considering the previous 3 1λ could be seen for the meat samples

cooked for 5 min (Figure 2B), that is, the intensities of bands in the

spectra increase and decrease as a function of 1λ. In addition of the

intense band observed at about 470 nm, another band appeared at
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350 to 380 nm, as well as some less intense peaks can be seen in the

region starting from 380 to 500 nm.

SFS makes it possible to narrow the spectral bands compared to

excitation or emission spectra, and to have information on the fluo-

rescent properties of several intrinsic fluorophores on a given spec-

trum.

Principal component analysis (PCA) of meat samples
PCAs were applied on 2 data sets (1λ = 40 nm and 1λ = 70 nm)

of synchronous spectra recorded on meat samples cooked from 0

to 10 min to investigate the potential of synchronous spectra to

Figure 1 --- Synchronous fluorescent landscape of meat:
(A) 3D for uncooked meat samples, (B) 3D for meat sam-
ples cooked for 10 min, and (C) 2D for meat samples
cooked for 0, 2, and 7 min (1λ = 60 nm).

discriminate these samples as a function of cooking time and to re-

trieve additional information from different offset values. The PCA

similarities maps defined by the principal components 1 and 2 for

synchronous spectra at 1λ = 40 nm (Figure 3A) and 1λ = 70 nm

(Figure 3B) showed that in both cases, the first 2 principal compo-

nents (PCs) accounted for more than 96.7% of the total variance

with a predominance of component 1 (92.4% for 1λ = 40 nm and

87.1% for 1λ = 70 nm). A discrimination of meat samples cooked

for 0, 1, and 2 min from the other samples cooked for 5, 7, and 10

min was observed according to PC 1 for the data set with offset 1λ

= 40 nm. Here samples cooked for less than 2 min were observed

on the left side of PC1 and the samples cooked for more than 5

min were present on the right side. Considering spectral pattern

1, the most discriminant wavelength was observed at 294 nm and

can be assigned to the fluorescence of protein tryptophan residues

(Figure 3C). The intensity of the band at 294 nm was the highest

for raw meat and decreased with the increase of the cooking time

suggesting a drastic decrease of tryptophan content for 10 min

cooking. A positive peak was also observed at 460 nm that might

correspond to Maillard-reaction compounds. For the data set with

1λ = 70 nm, a slightly different trend appeared since the meat

samples cooked for 2 min exhibited coordinates close to the ori-

gin according to PC 1 (Figure 3B). The spectral pattern associated

with PC1 showed a negative band at 294 nm (Figure 3D) and, as
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Figure 2 --- Synchronous fluorescence spectra of meat
recorded for 1λ = 60, 120, and 160 nm for the meat sam-
ples cooked at 237 ◦C for (A) 2 and (B) 5 min.
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described previously, can be assigned to the fluorescence of pro-

tein tryptophan residues. A positive peak was also observed at 460

nm that should correspond to Maillard-reaction products. Regard-

ing PC 2, the spectral pattern exhibited 2 positive peaks at 280 and

365 nm, and a negative one at 300 nm. The opposition between

the positive peak at 280 nm and the negative one at 300 nm may

be attributed to the change in the environment of protein trypto-

phans in relation with protein denaturation. It has been shown that

the emission of tryptophan is shifted towards higher wavelengths

when proteins are denatured (Dufour and Riaublanc 1997a). Con-

sidering the band at 365 nm, it may be assigned to the fluorescence

of Maillard-reaction compound that accumulated between 0 and 2

min, and that were transformed in other compounds fluorescing at

higher wavelengths (460 nm according to spectral pattern associ-

ated with PC1) for longer cooking time.

These results confirmed that the synchronous spectra retained

information related to the molecular structure of meat allowing dis-

criminating samples as a function of cooking time. More interest-

ingly, the differences observed on the 2 similarity maps (Figure 3A

and 4B) indicated that synchronous spectra recorded at 2 different

offsets contained complementary molecular information.

Calculation of the parallel factor (PARAFAC) analysis
models on meat samples

The objective of PARAFAC is to resolve the synchronous fluores-

cence signal into the contribution of each of the fluorescent com-

pounds present in the spectral data set of meat, that is, to estimate

the profiles of fluorophores directly from the synchronous fluores-

cence landscapes measurements.

To investigate how many components are needed, different

models were fitted using number of components varying from 1

to 5. The obtained results indicated that 2 components were suit-

able, since core consistency equal to 100% and explained variance

amounting to 67.89% were observed. Adding the 3rd component,

the core consistency decreased to 14% (87.02% of explained vari-

ance) (Table 1), suggesting that the model with 3 components was

unstable and over fitted.

Considering the loading profiles of PARAFAC (Figure 4C), the

1st component with maximum excitation at about 468 nm and

an optimal 1λ of 70 nm (Figure 4B) corresponded to the fluo-

rescence spectra of components that were formed during cook-

ing of meat. This fluorophore was not described well in literature

and might be referred to Maillard-reaction products. Ait Ameur

(2006) found a similar peak in cookies (λexc = 470 nm and λem

= 532 to 536 nm) and named it 530NF (530 nm neo-formed flu-

orescence). The researcher correlated it with hydroxymethylfur-

fural (HMF) content of the cookies. While HMF is nonfluorescent,

this correlation would be indirect. An other less intense fluores-

cence band at an excitation range of 340 to 400 nm (λem 410 to

470 nm) could be observed in this loading profile, which might

correspond to neo-formed compounds resulting from lipid oxida-

tion (Estévez and others 2008). Similar fluorescent band had also

been observed by Yaacoub and others (2009) in roasted nuts and

they attributed this fluorescence zone to neo-formed compounds

that were formed from proteins and lipidic secondary aldehydes by

cooking.

The loading profile (Figure 4C) of the 2nd component showed

maximum excitation at about 294 nm, which corresponded quite
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Figure 3 --- PCA similarity maps and their loadings defined by PC1 and PC2 for the synchronous spectra of meat
samples cooked from 0 to 10 min recorded with 1λ = 40 nm (A and C), and 1λ = 70 nm (B and D), respectively.
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well with the characteristics of tryptophan fluorescence spectra

(Boubellouta and Dufour 2008), which is present in meat proteins.

The optimal 1λ of 40 nm (Figure 4B, Table 2) agreed with the emis-

sion maxima of tryptophan residues located at 334 nm.

Table 1 --- Core consistency values and the explained vari-
ance resulting from PARAFAC models derived from syn-
chronous spectra recorded on cooked meat samples.

Number of components of PARAFAC
models

1 2 3 4 5

Core consistency (%) 100 100 14 0 0
Explained variance (%) 44.89 67.98 87.02 92.61 95.96
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Figure 4 --- Two-component nonnegativity constraint
model derived from the synchronous fluorescence spec-
tra of meat cooked from 0 to 10 min. (A) Concentration
mode, (B) 1λ profile, and (C) loading profiles.

Table 2 --- Emission and excitation maxima of the 2 com-
ponents of the PARAFAC model derived from synchronous
spectra recorded on cooked meat samples.

Component number of
PARAFAC model

1 2

λmax excitation (nm) 468 294
λmax emission (nm) 538 334

The loading in sample mode (Figure 4A) represents the concen-

tration mode for each fluorophore. The loading values are arranged

in such a way that the changes of the properties of fluorophores

can easily be caught throughout the cooking kinetic of meat sam-

ples (Boubellouta and Dufour 2008). Considering the 1st compo-

nent of PARAFAC model, which corresponded to the compounds

formed during the cooking kinetic, the profile of the estimated con-

centrations showed a significant increase with increasing time of

cooking. Regarding the loading in sample mode of component 2

corresponding to tryptophan, a large decrease was observed when

meat samples were submitted to cooking for 1 and 2 min while the

samples that were cooked for 5, 7, and 10 min showed negligible or

zero tryptophan. Tryptophan is very sensitive to oxidation at high

temperature, which causes the loss of almost all tryptophan fluo-

rescence in the meat sample when it was cooked for more than 5

min. This might happen due to pyrolisis of tryptophan, which may

lead to the formation of heterocyclic amines (Bordas and others

2004).

Conclusions

This exploratory study demonstrates the potential of syn-

chronous front-face fluorescence and chemometrics for the

analysis of meat cooking kinetics. It has been shown that recorded

synchronous fluorescence spectra allow to reveal information at

molecular level about meat cooked for different times. PARAFAC

analysis provided the mathematical decomposition of data sets.

From the results of PARAFAC analysis, 2 components were found

and it was shown that the 1st one can be attributed to Maillard-

reaction compounds and the 2nd to tryptophan residues in pro-

teins. In addition, this analytical method provides a simultaneous

determination of the fluorescence level (that is, loading in sam-

ple concentration) of these 2 compounds. This investigation un-

derlines the potential of synchronous fluorescence spectroscopy

in combination with chemometrics as a nondestructive innova-

tive method that can be applied to meat products for monitoring

quality during cooking kinetics. The next step will be to evaluate

the potential of synchronous fluorescence spectra coupled with re-

gression methods to predict the amount of some neo-formed com-

pounds formed during cooking.
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2008. Determination of aromatic amino acid content in cooked meat by deriva-
tive spectrophotometry: implications for nutritional quality of meat. Food Chem
114:1074–8.

Guimet F, Ferre J, Boque R, Rius FX. 2004. Application of unfold principal compo-
nent analysis and parallel factor analysis to the exploratory analysis of olive oils
by means of excitation emission matrix fluorescence spectroscopy. Anal Chim Acta
515:75–85.

Herbert S, Riaublanc A, Bouchet B, Gallant DJ, Dufour E. 1999. Fluorescence spec-
troscopy investigations of acid- and rennet-induced milk coagulations of milk. J
Dairy Sci 82:2056–62.

Kondjoyan A, Portanguen S. 2008. Prediction of surface and “under surface” tempera-
tures on poultry muscles and poultry skins subjected to jets of superheated steam.
Food Res Inter 41:16–30.

Kulmyrzaev A, Dufour E. 2002. Determination of lactulose and furosine in milk using
front face fluorescence spectroscopy. Lait 82:725–35.

Louwerse DJ, Smilde AK, Kiers HAL. 1999. Cross-validation of multiway component
models. J Chemom 13:491–510.

Moberg L, Robertsson G, Karlberg B. 2001. Spectrofluorimetric determination of
chlorophylls and pheopigments using parallel factor analysis. Talanta 54:161–
70.

Moller JKS, Parolari G, Gabba L, Christensen J, Skibsted LH. 2003. Monitoring chem-
ical changes of dry-cured Parma ham during processing by surface autofluores-
cence spectroscopy. J Agric Food Chem 51:1224–30.

Ni YN, Lin DQ, Kokot S. 2006. Synchronous fluorescence, UV-visible spectropho-
tometric, and voltammetric studies of the competitive interaction of bis(1,10-
phenanthroline) copper(II) complex and neutral red with DNA. Anal Biochem
352:231–42.

Ni YN, Lin DQ, Kokot S. 2008a. Fluorescence spectrometric study on the interactions
of Isoprocarb and sodium 2-isopropylphenate with bovine serum albumin. Talanta
76:513–21.

Ni YN, Lin DQ, Kokot S. 2008b. Synchronous fluorescence and UV-vis spectroscopic
studies of interaction between the tetracycline antibiotic, aluminium ions and
DNA with the aid of the Methylene Blue dye probe. Anal Chim Acta 606:19–
25.

Nikolajsen RPH, Booksh KS, Hansen AM, Bro R. 2003. Quantifying catecholamines
using multi-way kinetic modelling. Anal Chim Acta 475:137–50.

Pedersen DK, Munck L, Engelsen SB. 2002. Screening for dioxin contamination in
fish oil by PARAFAC and N-PLSR analysis of fluorescence landscapes. J Chemom
16:451–60.

Rizkallah J, Morales FJ, Ait-ameur L, Fogliano V, Hervieu A, Courel M, Birlouez-Aragon
I. 2008. Front face fluorescence spectroscopy and multiway analysis for process
control and NFC prediction in industrially processed cookies. Chemom Intell Lab
Syst 93:99–107.

Rodriguez-Cuesta MJ, Boque R, Rius FX, Zamoa DP, Galera MM, Frenich AG.
2003. Determination of carbendazim, fuberidazole and thiabendazole by three-
dimensional excitation-emission matrix fluorescence and parallel factor analysis.
Anal Chim Acta 491:47–56.

Rutledge DN, Bouveresse DJR. 2007. Multiway analysis of outer product arrays using
PARAFAC. Chemom Intell Lab Syst 85:170–8.

Sikorska E, Romaniuk A, Khmelinskii IV, Herance R, Bourdelande JL, Sikorski M,
Koziol J. 2004. Characterization of edible oils using total luminescence spec-
troscopy. J Fluoresc 14:25–35.

Smilde A, Bro R, Geladi P. 2004. Multi-way analysis. Applications in the chemical sci-
ences. Chichester, U.K.: Wiley and Sons.

Trevisan MG, Poppi RJ. 2003. Determination of doxorubicin in human plasma by
excitation-emission matrix fluorescence and multi-way analysis. Anal Chim Acta
493:69–81.

Yaacoub R, Saliba R, Nsouli B, Khalaf G, Rizkallah J, Birlouez-Aragon I. 2009. Rapid
assessment of neoformed compounds in nuts and sesame seeds by front-face flu-
orescence. Food Chem 115:304–12.

Vol. 74, Nr. 9, 2009—JOURNAL OF FOOD SCIENCE E539



1

Potential of synchronous fluorescence spectroscopy coupled with 

chemometrics to determine the heterocyclic aromatic amines  

in grilled meat 

A. SAHARa, S. PORTANGUENb, A. KONDJOYANb, É. DUFOURa,*
aU.R. “Typicité des Produits Alimentaires”, ENITA Clermont, Clermont Université,  

BP 35, F-63370 Lempdes, France 
bUR QuaPA, INRA Theix, F-63122 Saint Genès Champanelle, France 

* Present address of the corresponding author: Pr DUFOUR É, Ministère de l’alimentation, de 

l’agriculture et de la pêche, DG Enseignement et Recherche, 1ter avenue de Lowendal, 75700 

Paris 07 SP, France 

E-mail address: eric.dufour@agriculture.gouv.fr;  

Tel.: +33.1.49.55.85.53 



2

Abstract 

In this study, the potential of synchronous front-face fluorescence spectroscopy (SFS) coupled 

with chemometric techniques was investigated for the determination of heterocyclic aromatic 

amines (HAA) in cooked meat samples. Bovine meat samples (1-2 mm thick, 5 cm diameter) 

from Longissimus thoracis muscle were cooked at an average temperature of 237 oC for 5, 7 

and 10 minutes. Four HAA (4.8 DiMeIQx, MeIQx, IQx and PhIP) were determined on the 

cooked meat samples using classical LC-APCI-MS/MS method. In parallel, SFS spectra were 

recorded using a spectrofluorimeter on the same cooked meat samples in an excitation 

wavelength range of 250-550 nm using offsets of 20, 30, 40, 50, ……….,160 nm between 

excitation and emission monochromators. The three dimensional synchronous fluorescence 

data set was analysed using PARAFAC (parallel factor) analysis and N-PLS (n-way partial 

least square) regression method. PARAFAC analysis allowed to capture the fluorescence 

changes occurring in meat during cooking: the best model was obtained with 2 components 

(core consistency of 100% and explained variance of 99.2%). Whereas the loading profile of 

component 1 showed a maximum excitation at about 495 nm and an optimal offset of 60 nm, 

the loading profile of component 2 was characterized by a maximum excitation at 367 nm and 

an optimal offset of 90 nm. The results obtained using N-PLS regression showed good 

correlation between the spectral and analytical data: average recovery of 104 % for 4,8-

DiMelQx, 102 % for both MelQx and IQx, and 103 % for PhIP were obtained. In conclusion 

this study indicates that SFS along with chemometrics could be used as a rapid technique for 

the determination of HAA in meat. 

Key words: Heterocyclic aromatic amines; meat, synchronous fluorescence spectroscopy; 

parallel factor analysis; n-way partial least square regression.  
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1. Introduction 

Heterocyclic aromatic amines (HAA) are small molecules which formed in trace amounts 

when food proteins and creatine/creatinine are exposed to heat. HAA in our food come from 

meat that have been grilled/barbecued, broiled or pan-fried at high temperatures. The amount 

of HAA formed in meat are dependant on several parameters including type of meat, method, 

time and temperature of cooking, etc. [1]. HAA are generally formed at temperatures above 

150 °C [2] and their concentration increase by increasing cooking time and temperature [3]. 

However after attaining maximum concentration by prolonged cooking time, HAA may be 

subject to degradation or react with other compounds [4].The most commonly identified 

compounds are IQ, IQx, MelQ, MeIQx, 7,8-DiMeIQx, 4,8-DiMeIQx, PhIP and Trp-P-2 [5, 6] 

(see Abbreviations1). 

Over twenty years ago, HAA were found to be potent mutagens and about 80 % of all 

mutagens are also carcinogens [5] in laboratory animals (rats, mice and hamster). HAA in 

high quantity cause tumors of liver, colorectum, prostate and mammery glands in rodents [7] 

when they were fed for long period of time. Mutagenic activity of HAA increases when meat 

temperature is increased up to 300 °C because pyrolysis of amino acids lead to the formation 

of other HAA [8]. International Agency for Research on Cancer classified HAA as possible 

human carcinogens [9]. Thus quantitative measurements of HAA are very essential in cooked 

foods to minimize the risks of cancer in human beings [10]. Estimated daily intake of HAA 

based on the concentration of HAA in cooked foods is about 0.4 µg/person/day (for IQ, 

MelQ, MelQx, 4,8-DiMelQx, 7,8-DiMelQx, PhIP) [6].  

Identification and quantification of HAA were done initially by isolating these HAA from 

large quantity of cooked meat, using multiple chromatography steps. The mutagens were 

monitored by Ames bacterial mutagenesis assay and characterized by NMR and mass 

spectroscopy [7]. Then tandem-solid phase method was developed for HAA extraction and 

HPLC with UV diode array was used for detection [11]. Recently, liquid chromatography-

electrospray ionization/tandem mass spectrometry (LC-ESI-MS/MS) has been used to 

identify and characterized many undiscovered HAA in cooked meat [12-14]. 

                                                
1 Abbreviations : IQ : 2-amino-3-methylimidazo[4,5-f]-quinoline ; IQx : 2-amino-3-methylimidazo[4,5-f]-
quinoxaline ; MelQ : 2-amino-3,4-methylimidazo[4,5-f]quinoline ; MelQx : 2-amino-3,8-dimethyllimidazo[4,5-
f]quinoxaline; 7,8-DiMelQx : 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxalino ; 4,8-DiMelQx : 2-amino-3,4,8-
trimethylimidazo[4,5-f]quinoxaline ; PhIP : 2-amino-I-methyl-6-phenylimidazo[4,5-b]pyridine ; Trp-P-2 : 3-
amino-I-methyl-5H-pyrido[4,3-b]indole. 
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These methods were extremely time consuming and labour intensive. The growing needs for 

controlling the nutritional quality and safety of food products in minimum possible time led to 

replace the time consuming and expensive conventional methods with some reliable, rapid 

and less expensive techniques to evaluate Maillard reaction and lipid oxidation progress in 

food. 

Among other techniques, fluorescence spectroscopy is a good candidate because of its 

excellent sensitivity, selectivity and rapidity. This techniques had already been used to 

determine the thermal changes on various food products including milk [15], infant formula 

model [16], cookies [17] and seeds [18]. Fluorescence fingerprint of food changes globally by 

heating, as a result of the degradation/modification of some native fluorophores and  

development of neoformed fluorophores derived from Maillard reaction [19] or lipid 

oxidation [20]. Nowadays, synchronous front-face fluorescence spectroscopy (SFS) have 

been used more and more instead of traditional front-face fluorescence spectroscopic 

methods. In SFS, excitation and emission monochromators are scanned simultaneously, 

keeping a constant wavelength difference (��) between them. Enormous information about 

fluorophores could derived from SFS using multivariate analysis. SFS data could be 

decomposed into scores and loadings using three way parallel factor analysis (PARAFAC), 

enabling a thorough interpretation of spectral data. This chemometric technique had already 

been used in many food systems such as sugar [21], meat [22], fish oil [23], yoghurt [24], 

cheese [25], beer [26], red wine [27] and edible oils [28-31].  

Among other regression methods, N-PLS algorithm developed by Bro [32] had the potential 

to maintain the three dimensional structures of synchronous data; and the capability to extract 

lot of  information about fluorescent compounds present in samples and to predict the yields 

of food components.  

Interestingly, HAA exhibiting conjugated double bonds have fluorescence properties that 

have been used to detect these molecules following HPLC analysis [33]. The aim of this 

research work was to show the potential of SFS to monitor the fluorescence changes taking 

place in meat samples, cooked for 5, 7 and 10 minutes at 237 °C, using PARAFAC to 

determine intrinsic fluorophores formed during cooking and also to quantify four HAA 

present in cooked meat using N-PLS regression method.  
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2. Materials and methods 

2.1. Cooking of meat samples 

Longissimus thoracis muscle was taken from the carcass of an 18-month-old heifer 

immediately after slaughter. Meat samples (thin slices (1-2 mm) of 5 cm diameter) were 

cooked between 218 and 245 °C (average = 237 °C) for 5, 7 and 10 minutes under control 

conditions. Jets of superheated steam mixed with air were applied on very thin slices of meat. 

Kondjoyan and Portanguen [34] gave a detailed description of the experimental apparatus 

used for cooking, with functional analysis. The samples were vacuum packed and stored at 4 

°C for further analysis. 

2.2. Identification and quantification of HAA 

An LC-APCI-MS/MS method previously developed by Chevolleau and other [35] for the 

determination of HAA was adapted and optimized to quantify four HAA (4,8-DiMeIQx, 

MeIQx, IQx, and PhIP) in beef meat extracts. Kondjoyan and others [36] gave detailed 

description of methodology concerning the determination of HAA.  

2.3. Synchronous fluorescence spectra 

Fluorescence spectra were recorded using a FluoroMax-2 spectrofluorimeter (Spex-Jobin 

Yvon, Longjumeau, France) mounted with a front-surface sample-holder and the incidence 

angle of the excitation radiation was set at 56° to ensure that reflected light, scattered 

radiation, and depolarisation phenomena were minimized. Synchronous fluorescence spectra 

were collected in the 250–550 nm excitation wavelength range using offsets of 20, 30, 40, 50, 

60, 70, 80, 90, 100, 110, 120, 130, 140, 150 and 160 nm between excitation and emission 

monochromators. The spectra were collected at room temperature and the experiment was 

repeated for eight times for each cooking time, so a total of 360 synchronous fluorescence 

spectra (3 different times of cooking x 8 repetitions x 15 offsets) were recorded. 

2.4. Chemometrics 
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Data analysis were performed by MatLab Software (The Mathworks Inc., Natic, MA, USA) 

using N-way Toolbox (http://www.models.kvl.dk). 

2.4.1. Pre-treatment of the spectra 

In order to reduce scattering effects, the synchronous fluorescence spectra were normalized by 

reducing the area under each spectrum to a value of 1 according to Bertrand and Scotter [37].  

2.4.2. Parallel Factor Analysis (PARAFAC) 

PARAFAC models were developed (using N-way Toolbox) for each cooking time (data array 

with 8 samples, 301 excitation wavelengths and 15 offsets). In order to determine the 

appropriate number of PARAFAC components, core consistency diagnostic was used. It is 

often used as a measure of percentage of agreement of the PARAFAC models with ideal 

trilinearity and guide the choice of the number of components to be considered [38]. When 

the core consistency drops from a high value (above about 60%) to a low value (below about 

50%), it indicates that an appropriate number of components has been attained [39]. In 

addition, the non-negativity was applied in three modes since both the spectral intensities and 

fluorophore concentrations are known to be positive. 

2.4.3. N-PLS 

N-PLS, an extension of two way PLS regression for multi-way data, was used on the three-

way fluorescence array to predict the quantity of HAA in cooked meat samples. For the 

determination of each HAA, 24 samples (8 repetitions for each cooking time) along with 15 

offsets and an excitation wavelength ranging from 250 to 550 nm were used. So, three-array 

data set was constructed (24 x 15 x 301) for each HAA in such a way that in the sampling 

mode, samples were arranged in increasing cooking time, i.e., sample number 1 to 8, 9 to 16 

and 17 to 24 represented 5, 7 and 10 minutes of cooking time respectively. Root mean square 

of prediction (RMSEP) or cross-validation and coefficient of determination (R2) were used as 

parameters to determine appropriate number of latent variables (LV). In addition to cross-

validated prediction of HAA, N-PLS construct a structured array, holding the N-PLS model, 

which could be used to plot the profiles (most discriminant wavelengths) associated with each 
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compound to be predicted for each LV, to determine the optimal �� of each compound to be 

predicted and to get the concentration mode of each LV. 
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3. Results and discussion 

3.1. Concentration of HAA determined by analytical technique 

Concentrations of four HAA were measured in meat samples cooked at 237 °C for 5, 7 and 10 

minutes (table 1). Results showed that concentration of MelQx increased by increasing the 

time of cooking, however concentrations of 4,8-DiMelQx, IQx and PhIP decreased in the 

meat samples between 5 and 7 minutes of cooking and then increased for cooking time of 10 

minutes. Smaller amounts of 4,8-DiMelQx and IQx were formed in meat compared to MelQx 

and PhIP [40]. It was observed that standard deviation increased by increasing cooking time: 

it was explained by the fact that it is very difficult to obtain a perfectly similar combination of 

time and temperature conditions using highly superheated steam jets [36].  

3.2. Synchronous fluorescence spectra of cooked meat sample 

The two dimensional synchronous florescence spectra presented in figure 1 showed visual 

differences for the meat samples cooked for 5, 7 and 10 minutes. Two prominent peaks could 

be observed at about 350 and 460 nm in synchronous spectra, however the peak at about 350 

nm was more prominent in the spectra of meat samples cooked for 7 minutes. These peaks 

were not present in uncooked meat (data not shown) and appeared gradually during the 

kinetics of cooking. In fact, raw meat is characterized by a band at about 290 nm 

corresponding to protein tryptophan residues which are rapidly degraded during cooking at 

237 °C. The peaks (corresponding to a �� = 120 nm) observed in figure 1 mainly 

corresponded to the fluorescence of neo-formed compounds [41-43]. It showed the potential 

of SFS to differentiate among the samples cooked for different periods of time, on the basis of 

the fluorophores present in the samples, without using time consuming separation techniques.  

As shown in figure 2, the spectra recorded at different offsets (20, 60, 100 and 140 nm) of the 

sample cooked for 7 minutes showed different peaks. It was noted that fluorescent bands 

appeared and disappeared in different offsets. For example at �� = 20 and 60 nm, 

fluorescence spectra of meat sample showed a small peak at about 295 nm, which 

minimized/disappeared in higher offsets (�� > 70 nm). This peak might originate from the 

fluorescence of residual protein tryptophan residues [18, 44] and was not detected at higher 

offsets because of its maximum emission at about 350 nm (i.e., �� = 60 nm). Or this peak 

may be attributed to HAA since the literature reports the used of fluorescence excitation at 
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307 nm and emission at 370 nm to detect HAA following HPLC analysis [33]. Thus, lot of 

different fluorophores could be identified on a given spectrum using different ��. These 

differences in spectra showed the capability of SFS to explore the sample more efficiently 

than the traditional fluorescence spectroscopy by narrowing the spectral bands and to collect 

information in a given spectrum about several intrinsic fluorophores present in the sample. 

3.3. PARAFAC models for cooked meat samples 

PARAFAC analysis was used to decompose the three dimensional spectral data set (�� x 

samples x excitation wavelengths) to determine the contribution of each fluorophore present 

in cooked meat samples. For this purpose, the first step was to convert the synchronous 

fluorescence data set to a three-array (15 x 24 x 301) using all offsets (15), all samples cooked 

for 5, 7 and 10 minutes (3 times x 8 repetitions) and all wavelengths (250 to 550 nm range). 

In order to develop relevant PARAFAC models, core consistency diagnostic [44, 45] was 

applied using 1 to 4 components (table 2). Results of core consistency diagnostic showed 100 

% robustness of the model using two components of PARAFAC, and this model with 2 

components took into account 99.2 % of variance. But core consistency dropped to 0 % 

(explained variance 99.5 %) when a third component was added to PARAFAC model, 

showing that the model with more than two components is unstable or over fitted. So, 

PARAFAC model with two components was used to the investigated data set. 

Loading profile of the first component of PARAFAC model showed maximum excitation 

band at about 460-530 nm (figure 3A) with an optimal �� of 60 nm (figure 3B). It was 

difficult to assign this fluorescence band (�exc = 460-530, �em = 520-590 nm) with a 

prominent peak at 468 nm (�em = 528 nm) to some particular fluorophores of cooked meat, 

since not much references in the literature were found about this fluorescence band. However 

Ait Ameur [41] found a similar peak in this fluorescence range in cookies (�exc = 470, �em = 

532-536 nm) and named this fluorophores as 530 nm neoformed fluorescence or 530NF. 

Author correlated this peak to hydroxymethylfurfural (HMF) content, however knowing the 

fact that HMF is non-fluorescent, the correlation was made indirect.  

Loading profile of the second component of PARAFAC model (figure 3A) showed an 

excitation band at about 325-410 nm with an optimal �� of 90 nm (�em = 415-500 nm) 

(figure 3B) corresponding to various fluorophores presented in cooked meat sample. 

Excitation wavelengths in this region might corresponds to the fluorophores formed during 

Maillard reaction [41, 42] and were named as Maillard reaction fluorescence [43]. Yaacoub 
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and others [18] found a fluorescence zone with maximum excitation/emission wavelengths of 

360/450 nm in roasted nuts and sesame seeds and associated these fluorescent molecules to 

neoformed compounds arising during thermal process. This fluorescent region could also 

represent fluorophores formed by protein oxidation. Estevez and others [46] determined the 

increase in fluorescent protein oxidation products in oil-in-water emulsions using excitation 

wavelength of 350 nm and found maximum emission at about 410-445 nm region. 

Loading profile in the concentration mode of the two component of PARAFAC model 

showed an increase in Maillard reaction products by increasing cooking time from 5 to 7 

minutes. While from 7 to 10 minutes, minute changes in concentration mode of PARAFAC 

model could be observed (figure 3C): the concentration mode of factor 1 slightly decreased 

and the one of factor 2 remained constant.  

These results showed that SFS coupled with PARAFAC decomposition models could be used 

to detect the changes occurred in meat during cooking. 

3.4. Prediction of HAA using N-PLS regression 

For prediction of HAA, N-PLS regression method was applied between three dimensional 

spectral data of SFS and HAA determined by analytical method. Results of N-PLS with cross 

validation showed that more than 99 % of response variance (Y) (i.e. HAA) could be 

explained by 99.6 % of the variance of explanatory variables (X) using 9 LV (table 3). 

RMSEP seemed to be quite higher for MelQx (59.6) and PhIP (39.9) in N-PLS models 

because these HAA contained higher standard deviations (SD) when they were determined by 

analytical methods, specially for the meat samples cooked for 7 and 10 minutes. This 

happened due to the difficulty to obtain a perfectly similar time and temperature history for 

the meat samples [36]. On whole RMSEP was similar to SD values obtained by analytical 

measurement of HAA. 

Good correlations between the actual concentrations determined using LC-APCI-MS/MS of 

the four HAA and their concentrations predicted from SFS data using N-PLS were 

demonstrated in table 4. It can be noted that very good percentages of average recovery were 

found for the four studied HAA, i.e., 104 % for 4,8-DiMelQx, 102 % for MelQx and IQx, and 

103 % for PhIP. 

N-PLS model gave a structured array that could be used to get profiles (one for each HAA to 

be predicted) with the most discriminant wavelengths associated to each LV along with 

optimal ��. Although the results of N-PLS were obtained using 9 LV, here we describe in 



11

detail, the first two LV of each response, in order to derive wavelengths used by the N-PLS 

model to predict each HAA [16]. 

Graphical representation of first and second loadings of LV were shown in figure 4A and B. It 

could be noted that the profile associated with the first LV is similar for all responses (figure 

4A), because similar profiles and optimal �� were found for the first LV. These results are in 

agreement with Diez and others [16] who found that the first LV were similar for all 

responses in heat treated infant formula models. So, First LV represents an average 

fluorescence spectrum of all fluorophores formed during the cooking of meat samples. 

However, second LV showed different profiles for each predicted HAA (figure 4B) [16]. 

Second LV of N-PLS regression model showed that most discriminant wavelengths used to 

predict 4,8-DiMelQx and PhIP were grossly opposite to MelQx and IQx and also that optimal 

�� was 40 nm for all four HAA but PhIP (�� = 30 nm). 

Considering figure 4B, a less prominent peak can be observed on the loadings for the second 

LV at about 295 nm with corresponding emission wavelengths (�em) at 335 nm for 4,8-

DiMelQx, MelQx and IQx. Whereas, a first peak at about 289 nm (�em = 319 nm) was 

observed for PhIP profile. However, the literature reports the used of fluorescence excitation 

at 307 nm (�em = 370 nm) to detect HAA following HPLC analysis [33]. The differences 

between N-PLS results and the data from the literature can be explained by the fact that the 

locations of excitation and emission wavelengths of fluorophores largely depend on their 

environments [47]: indeed, the environments of HAA in meat or in HPLC solvent are 

different.  

The profiles associated with the 2nd LV also showed 2 prominent peaks. First prominent peak 

was observed at 380 nm for 4,8-DiMelQx and PhIP (�em = 420 nm and 410 nm for 4,8-

DiMelQx and PhIP, respectively), whereas the spectral loading of MelQx and IQx showed a 

less intense but prominent peak at 397 nm (�em = 437 nm) and 378 nm (�em = 418 nm), 

respectively. Another intense peak was located at about 468 nm (�em = 508 for 4,8-DiMelQx, 

MelQx and IQx, and �em = 498 nm for PhIP). The spectral loading of DiMelQx, MelQx and 

IQx also showed a fluorescent band at 530-550 nm (�em = 570-590 nm), this band was not 

observed in the fluorescence profile associated with PhIP. 

Apart from some differences in excitation spectra of HAA, the fluorescence emission 

spectrum of PhIP would exhibit differences from the ones of the 3 others HAA, because the 

N-PLS model indicated an optimal �� equal to 30 nm for PhIP. Thus, SFS showed that the 

fluorescence properties of the IQx compounds should be different from PhIP. These two types 

of compounds are formed from different precursors and have different chemical structures. 
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Precursors for IQx compounds include free amino acids (threonine for MelQx and 4,8-

DiMelQx), hexoses and creatine already present in raw meat. It was thought that creatine 

formed the amino-imidazo part of the molecule, while the remaining part came from Strecker 

degradation products that were formed during Maillard reaction. However, formation of PhIP 

was favoured by glucose, phenylalanine and creatine [6]. The obtained results ensure the 

stability and robustness of N-PLS model to predict the response variable accurately. 

Figure 5 showed the concentration mode of N-PLS models corresponding to the concentration 

of each HAA determined by 2nd LV of N-PLS model. It showed that all HAA but PhIP 

increased by increasing the time of cooking. Indeed, PhIP concentration was decreased when 

the cooking time of the meat samples were increased from 5 to 7 minutes: this hold true if we 

looked at the amount of PhIP measured by analytical method (table 1) which decreased 

between 5 and 7 min cooking. Thus, 2nd LV of N-PLS contained precise information which is 

related to the fluorescence properties of HAA produced in meat during cooking. Again it 

confirmed the accuracy of the model developed from SFS data using N-PLS. 
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Conclusions 

In this study we demonstrated the potential of SFS and chemometrics for the analysis of HAA 

in cooked meat samples. Synchronous fluorescence spectra of the meat samples cooked for 

different periods of time reveal information at molecular level about the fluorescent changes 

occurring during cooking of meat, in general, and the fluorescence signals of four HAA, in 

particular, following PARAFAC and N-PLS analysis. From the two components of 

PARAFAC, lot of information could be derived about the fluorophores present in meat. In 

addition, N-PLS regression method was used to quantify four HAA formed during cooking 

and to derive information from profiles associated to LV on the fluorescence characteristics of 

HAA. Good correlations were found between the actual and predicted HAA. Thus SFS along 

with chemometrics could be used as a non-destructive and innovative method to monitoring 

the neo-formed compounds such as HAA during thermal processing of meat.  
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Legends of the figures  

Figure 1. Normalized synchronous fluorescence spectra (�� = 120 nm) of meat recorded after 

5 , 7 and 10 minutes of cooking. 

Figure 2. Normalized synchronous fluorescence spectra of meat cooked for 7 minutes 

recorded for different �� (�� = 20, 60 and 100 nm). 

Figure 3. Loading profiles of the two components of PARAFAC model derived from 

synchronous fluorescence spectra recorded on meat samples cooked for 5, 7 and 10 minutes at 

237 °C. (A) excitation profiles, (B) �� profile, (C) Concentration mode. 

Figure 4. Loading profiles of first (A) and second (B) latent variables of N-PLS model used 

for the prediction of heterocyclic amines (4,8-DiMelQx, IQx, MelQx and PhIP). 

Figure 5. Concentration mode of N-PLS model constructed using synchronous fluorescence 

spectra of meat samples cooked for 5 (black dots), 7 (white dots) and 10 minutes (parallel 

lines). 
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Figure 1. Normalized synchronous fluorescence spectra (�� = 120 nm) of meat recorded after 

5 , 7 and 10 minutes of cooking. 
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Figure 2. Normalized synchronous fluorescence spectra of meat cooked for 7 minutes 

recorded for different �� (�� = 20, 60 and 100 nm). 
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Figure 3. Loading profiles of the two components of PARAFAC model derived from 

synchronous fluorescence spectra recorded on meat samples cooked for 5, 7 and 10 minutes at 

237 °C. (A) excitation profiles, (B) �� profile, (C) Concentration mode. 
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Figure 4. Loading profiles of first (A) and second (B) latent variables of N-PLS model used 

for the prediction of heterocyclic amines (4,8-DiMelQx, IQx, MelQx and PhIP). 
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Figure 5. Concentration mode of N-PLS model constructed using synchronous fluorescence 

spectra of meat samples cooked for 5 (black dots), 7 (white dots) and 10 minutes (parallel 

lines). 
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Table 1 – Concentrations of four HAA (ng/g of freeze-dried product) determined by analytical 

method in meat samples after 5, 7 and 10 minutes of cooking at 237 °C. 

Heterocyclic 
Amines

5 min. 7 min. 10 min.

4,8-DiMelQx  11.7 + 1.4 10.1 + 2.9 20.1 + 5.8

MelQx  292.8 + 20.0 316.9 + 81.2 473.1 + 89.1

IQx   17.2 + 0.4 18.7 + 5.2 25.5 + 2.7

PhIP  205.0 + 8.2 160.7 + 50.8 292.3 + 37.3 
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Table 2. Core consistency values and explained variance resulting from PARAFAC models. 

1 2 3 4

Core consistency (%) 100 100 0 0

Explained Variance (%) 96.1 99.2 99.5 99.7

Number of components of PARAFAC models
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Table 3. Results of N-PLS regression between heterocyclic amines and synchronous 

fluorescence spectra of cooked meat samples. 

aLV: Number of latent variable. 
bX-Block: Synchronous fluorescence spectra. 
cY-Block: Heterocyclic amines determined by analytical technique. 
dRMSEP: Root mean square error of prediction. 
eR2: Coefficient of determination. 

aLV bX-Block cY-Block dRMSEP eR2

4,8-DiMelQx 9 99.6 99.0 2.9 0.8

MelQx 9 99.6 99.4 59.6 0.7

IQx 9 99.6 99.3 3.5 0.5

PhIP 9 99.6 99.3 39.9 0.7

Heterocyclic 
Amines

Percent Variance Captured by N-PLS Model   
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Table 4. Actual (determined by analytical method in ng/g of freeze-dried product) and 

predicted concentrations of four heterocyclic amines and recovery ( %) using N-PLS models 

between synchronous fluorescence spectra and heterocyclic amines determined by analytical 

method. 

Actual Predicted Recovery Actual Predicted Recovery Actual Predicted Recovery Actual Predicted Recovery 
1 12 13 105 310 287 93 17 17 99 207 198 96
2 13 12 99 298 289 97 18 17 94 212 188 89
3 10 10 101 271 270 100 17 16 98 196 194 99
4 12 11 92 293 285 97 17 18 104 205 222 108
5 12 11 90 310 276 89 17 17 101 207 206 99
6 13 12 96 298 301 101 18 17 99 212 211 99
7 10 10 99 271 280 103 17 17 100 196 184 94
8 12 11 94 293 291 99 17 17 101 205 195 95
9 8 14 177 260 385 148 15 22 147 125 212 170
10 12 12 95 374 314 84 22 17 78 197 171 87
11 10 8 82 317 260 82 19 15 82 161 134 83
12 8 11 137 260 320 123 15 19 129 125 175 140
13 12 9 78 374 308 82 22 18 82 197 154 78
14 10 12 119 317 378 119 19 23 121 161 197 122
15 8 12 154 260 381 147 15 22 148 125 193 154
16 12 8 69 374 256 68 22 15 67 197 117 60
17 25 24 96 538 566 105 26 28 106 309 325 105
18 28 23 85 597 541 91 28 28 100 349 286 82
19 18 15 83 426 404 95 21 24 113 257 245 95
20 15 17 109 405 416 103 27 22 82 277 239 86
21 15 20 139 399 475 119 25 26 106 269 308 115
22 20 15 76 473 418 88 25 25 98 292 286 98
23 25 29 116 538 616 114 26 28 105 309 373 120
24 28 27 98 597 575 96 28 26 93 349 343 98

104 102 102 103

PhIP

Average recovery (%) 

4,8-DiMelQx IQxSample 
No.

MelQx
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Abstract 

In this work potential of synchronous front-face fluorescence spectroscopy along wioth 

chemometric methods was investigated for the determination of microbial load on chicken 

breast fillets stored aerobically at 5°C during 0, 1, 2, 3, 5 and 8 days, and 15 °C for 0, 0.5, 1, 

2, 3 and 5 days. Total viable count (TVC), Pseudomonas, Enterobacteriaceae and 

Brochothrix thermosphacta were determined on chicken breast fillets at each step of the 2 

kinetics using culture dependent methods. Initial TVC was 3.4 log cfu/cm² and TVC reached 

8.4 log cfu/cm² and 8.3 log cfu/cm² following 8 days at 5°C and 2 days at 15°C, respectively. 

In parallel, synchronous fluorescence spectra were recorded in an excitation wavelength range 

of 250 – 500 nm using offsets of 20, 40, 60, ….., 180 nm between excitation and emission 

monochromators. PARAFAC (parallel factor) analysis allowed to capture the changes 

occurring in the synchronous fluorescence spectral data. The best PARAFAC models showed 

3 and 2 components for kinetics recorded at 5 and 15°C, respectively. PLSDA (partial least 

square discriminant analysis) was carried out to test the reallocation of the spectra of the 

individual samples within the six groups corresponding to the six investigated storage times 

and the results showed that 100 % of good classifications were obtained using 4 PLS factors. 

Finally, N-PLS regression was used to predict the microbial counts for TVC, Pseudomonas, 

Enterobacteriaceae and Brochothrix thermosphacta from the spectral data. Good average 

recoveries of 100 to 102 %, excellent correlations (R2 = 0.99) and very small root mean 

squares (between 0.1 and 0.2 log cfu/cm²) of prediction were obtained from the spectral data 

sets recorded on samples stored at 5°C and 15°C for TVC, Pseudomonas, Enterobacteriaceae

and Brochothrix thermosphacta. 

Key words: synchronous fluorescence spectroscopy; aerobic storage; chicken; microbes; 

chemometrics 
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1. Introduction 

Muscle foods including both poultry and meat are an important part of human diet since 

several thousands years. These foods are susceptible to spoilage arising from physical 

damage, chemical changes and microbial spoilage, the later being the most significant to 

cause meat deterioration. Spoilage mainly affect organoleptic characteristics including 

changes in appearance (discoloration), the development of off-odors, slime formation and any 

other changes in meat that makes it undesirable for human consumption (Ellis and Goodacre, 

2001). Microbial load and composition of micro flora are very important parameters to 

determine the quality and shelf life of meat and meat products. Depending on the temperature 

after slaughtering, microorganisms can spoil the chicken from 4 to 10 days under 

refrigeration. There are different types of microorganisms that can cause spoilage even in 

chilled meat including Pseudomonas, Acinetobactor, Moraxella, Aeromonas, Brochothrix 

thermosphacta and family of Enterobacteriacae. Total viable count, Pseudomonas and 

Enterobacteriaceae were generally high for chicken samples stored aerobically and 

Brochothrix thermosphacta found to be prominent in modified atmosphere packaging. It is 

generally accepted that sensory spoilage of chicken fillets stored under aerobic conditions 

becomes detectable when the total viable count reaches 8 log10 cfu g-1 (Newton and Gill, 

1978; Nychas and Tassou, 1997). 

Meat spoilage depends on the initial load of micro flora, as well as product composition and 

growth environment. However, microbial growth and colonization occurs in few steps. The 

first step is the attachment of bacterial cells with the surface of meat (Marshall et al., 1971) 

and the second one involves the formation of an adhesive extracellular polysacchride layer 

(Costerton et al., 1981) on meat surface (slim formation). The slim layer that is responsible 
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for the surface spoilage of stored meat corresponds to bacteria forming biofilm and consists of 

a mixed-species/strains population of microorganisms (Jay et al., 2003). 

The conventional microbiological methods for detection and quantification of microbial load 

in meat are time consuming and take several hours to several days to provide results. In recent 

years some new techniques were introduced to replace the culture dependent techniques. 

Several methods have been used since last two decades including some enumeration 

techniques based on microscopy (Pyle et al., 1999), ATP bioluminescence (Champiat et al., 

2001) and measurement of electrical phenomenon (Betts, 1999) or some detection methods 

including immunological (Jabbar and Joishy, 1999) and molecular-based techniques (ELISA, 

PCR, etc.) (Mullis and Faloona, 1987). It is clear that there is a wide range of methods to 

determine the presence, type and enumeration of microorganisms in meat, but the major 

drawback is that these methods are still laborious and slow. 

Among other techniques, spectroscopy is a good candidate as they are rapid and non-

destructive analytical techniques. Mid infrared spectroscopy has been used since last few 

years for discrimination and detection of adulteration in meats (Al-Jowder et al., 1999; Al-

Jowder et al., 1997; Al-Jowder et al., 2002). Authors have also demonstrated that a mid 

infrared spectrum of a bacteria is the fingerprint of this bacterial strain allowing its 

identification (Naumann et al., 1988). Infrared spectroscopy has been presented as an 

alternative to the above mentioned methods for the determination of meat spoilage. Indeed, 

near infrared and mid-infrared spectroscopies have also been used for rapid and quantitative 

detection of microbial spoilage in chicken meat (Lin et al., 2004) and beef meat (Ammor et 

al., 2009), respectively.  

Considering spectroscopic techniques, fluorescence spectroscopy have also recently been 

used for identification of bacteria (Ammor et al., 2004; Leblanc and Dufour, 2002), separation 

of bacteria from yeast (Bhatta et al., 2006) and differentiation among microorganisms 
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belonging to different taxonomical families (Giana et al., 2003; Leblanc and Dufour, 2002; 

Sorrell et al., 1994; Tourkya et al., 2009). A lot of endogenous molecules such as proteins, 

vitamins, coenzymes, … of bacteria are fluorescent thus making fluorescence spectroscopy a 

valuable technique for the determination of microbial spoilage in meat. This technique is also 

well known for its excellent sensitivity, selectivity and rapidity. Front-face fluorescence 

spectroscopy has the potential to detect and quantify the microbial spoilage present at the 

surface of meat. Indeed, fluorescence characteristics of molecules are very sensitive to their 

environment which leads to the advantage to report a lot of information related to the changes 

occurring at the surface of meat sample such as the development of biofilms. 

Synchronous front-face fluorescence spectroscopy (SFS) can be helpful to explore the 

fluorophores present in sample in more detail. In, SFS excitation and emission 

monochromators are scanned simultaneously, keeping a constant wavelength difference (��) 

between them, which makes it possible to narrow the spectral bands and get information on 

several fluorophores in a given spectrum.  

Parallel factor (PARAFAC) analysis, a multidimensional statistical method corresponding to 

the generalization of principal components analysis to higher-order arrays (Burdick, 1995), is 

capable for a thorough interpretation of three-way fluorescence spectral data (Bosco et al., 

2006) and has already been used in many food systems including meat (Moller et al., 2003), 

fish oil (Pedersen et al., 2002), milk (Boubellouta and Dufour, 2008), cheese (Christensen et 

al., 2003), sugar (Bro, 1999), beer (Sikorska et al., 2008), red wine (Airado-Rodriguez et al., 

2009) and oils (Dupuy et al., 2005; Guimet et al., 2005a; Guimet et al., 2004; Guimet et al., 

2005b; Sikorska et al., 2004).  

In order to quantify the microbial loads from three-way fluorescence spectral data, N-PLS 

regression method (Bro, 1996) can be used. This predictive method is able to extract lot of  
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information about fluorescent compounds present in synchronous spectra and allows to 

predict the counts of bacteria. 

The aim of present research work was to explore the potential of SFS coupled with 

chemometrics to detect the changes in microbial flora, i.e., total viable count (TVC), 

Pseudomonas, Enterobacteriaceae and Brochothrix thermosphacta, occurring in chicken 

breast fillets during aerobic storage kinetics at 5 and 15 °C, and to predict the microbial 

counts, i.e., TVC, Pseudomonas, Enterobacteriaceae and Brochothrix thermosphacta, from 

synchronous fluorescence spectra. 

2. Materials and methods 

2.1. Sampling and storage conditions 

21 chicken breast fillets without skin were purchased from a local super-market (CORA, 

Lempdes) in packed form and transported to the laboratory within 20 minutes. One sample 

was analyzed immediately and it was considered as the starting point of the storage kinetics. 

Samples were stored aerobically by enclosing them into permeable polyethylene bags. The 

samples were divided into two lots (10 fillets/lot) and packed individually (1fillet/pouch). One 

lot (10 fillets) of chicken breast samples was stored at 5 °C and analyzed on 1, 2, 3, 5 and 8 

days of storage, while the other lot (10 fillets) was stored at 15 °C for analysis on 0.5, 1, 2, 3 

and 5 days of storage. For analysis, one pouch was used for microbial determination and an 

other for collection of fluorescence spectra. 

2.2. Microbiological analysis

Samples were taken aseptically from the pouch and placed on a clean and aseptic place at 

room temperature. Then the chicken fillet was sampled by swab test using sterile cotton wool 
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swabs held by a stick (ISO, 18593). These swabs were moistened with 0.1 % peptone water. 

An area of 50 cm2 was marked with a sterile frame of 5 cm x 10 cm. The swabs were rubbed 

on the marked sites continuously for about 30 seconds and then put into distilled screw-

capped test tube containing 10 ml of peptone water (BK018). For uniform distribution of 

microorganisms, these test tubes were shaken well using vortex mixer for about 30 seconds. 

Tenfold serial dilutions up to 10-8 (increased with increasing storage time) were prepared for 

all samples. For microbial enumeration, 50 µl of serial decimal dilutions of poultry 

homogenates was plated on the surface respective media plate using spiral plate technique 

(NF, V 08-100). 

TVC were determined by incubating 50 µl of appropriate dilution on plate count agar for 72 

hours at 25 °C (ISO, 2293). Pseudomonas was enumerated on Cetrimide, Fucidine and 

Cephaloridine (CFC) agar and incubating 50 µl of dilution at 25 °C for 48 hours (ISO, 

13720). Members of Enterobacteriaceae family were determined by inoculated 50 µl of the 

suitable dilution on Violet Red Bile Dextrose Agar (VRBDA) for 24 hours at 30°C (ISO, 

5552). Streptomycin Tallium Actidione Agar (STAA) was used to determine Brochothrix 

thermosphacta by incubation of the plates at 20 °C for 72 hours (ISO, 13722). Two replicates 

of at least five appropriate dilutions (depending on the day of sampling) were enumerated. All 

plates were visually analysed for morphology and typical colony types associated with each 

growth medium. Actual colony counts (cfu/cm2) of microbiological data were transformed to 

logarithmic values. 

2.3. Collection of synchronous fluorescence spectra

Each sampling day, a chicken breast fillet was taken out aseptically from one pouch and a 

sample of approximately 4 cm x 1 cm x 0.3 cm were excised in parallel to the microbiological 

analysis. The sample was placed between 2 quartz slides and mounted in the sample holder of 
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the spectrofluorimeter. Fluorescence spectra were recorded using a FluoroMax-2 

spectrofluorimeter (Spex-Jobin Yvon, Longjumeau, France) mounted with a front-surface 

sample-holder and the incidence angle of the excitation radiation was set at 56° to ensure that 

reflected light, scattered radiation, and depolarisation phenomena were minimized. 

Synchronous fluorescence spectra were collected in the 250–550 nm excitation wavelength 

range using offsets of 20, 40, 60, 80, 100, 120, 140, 160 and 180 nm between excitation and 

emission monochromators. The spectra were collected at room temperature and the 

experiment was repeated for two times for each sample, so a total of 216 synchronous 

fluorescence spectra (2 different temperature of storage x 6 different time of storage x 2 

repetitions x 9 offsets) were recorded. 

2.4. Chemometrics 

2.4.1. Pre-treatment of spectra 

In order to reduce scattering effects, the synchronous fluorescence spectra were normalized by 

reducing the area under each spectrum to a value of 1 (Bertrand and Scotter, 1992).  

2.4.2. Analysis of variance (ANOVA) 

Statistical analysis of microbial data was carried out using STATISTICA software. 

Significance differences of the growth of each microbe during storage was determined by 

analysis of variance (ANOVA) using the least square difference method (Fisher test). 

Differences were considered significant at P < 0.01 level. 

2.4.3. Discriminant analysis (PLSDA) 

Partial least square discriminant analysis (PLSDA) with cross validation were performed on 

normalized spectral data in MATLAB (The Mathworks Inc., Natic, MA, USA) using ‘Saisir’ 
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package available at the website address: http://easy-chemometrics.fr. The aim of this 

technique is to predict the membership of an individual to a qualitative group defined as a 

preliminary (Vigneau et al., 2006). Synchronous fluorescence spectra obtained using various 

offsets (20, 40, 60, ……., 180) were combined into one file (concatenation). Chicken breast 

samples were classified into six groups, according to their storage time, i.e., 0, 1, 2, 3, 5 and 8 

days for 5°C, and 0, 0.5, 1, 2, 3 and 5 days for 15 °C. The PLSDA assesses new synthetic 

variables called loading factors, which are linear combinations of the variables and allows a 

better separation of the centre of gravity of the considered groups. The method allows the 

individual samples to be reallocated within the various groups. Comparison of the predicted 

groups to the real group is an indicator of the quality of the discrimination and it is valued as 

the percentage of correct classification. The spectral collection was divided into two groups: 

half of the investigated chicken breast samples were used for the calibration set and half as 

validation set. 

2.4.4. Parallel Factor (PARAFAC) analysis 

PARAFAC model of meat samples were developed (using N-way Toolbox) for each storage 

temperature (3-way fluorescence array with 12 samples (6 storage times x 2 repetitions, for a 

given temperature), 301 excitation wavelengths and 9 offsets). In order to determine the 

appropriate number of PARAFAC components, core consistency diagnostic was used as a 

measure of percentage of agreement of the PARAFAC models with ideal trilinearity and 

guide the choice of the number of components to be considered (Pyle et al., 1999). When the 

core consistency drops from a high value to a low value (below 50%), it indicates that an 

appropriate number of components has been attained (Moberg et al., 2001). In addition, the 

non-negativity had applied in three modes since both the spectral intensities and fluorophore 

concentrations are known to be positive. 
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Data analysis were preformed by MatLab Software (The Mathworks Inc., Natic, MA, USA) 

using N-way Toolbox (http://www.models.kvl.dk). 

2.4.5. N-PLS regression method 

N-PLS (extension of two way PLS regression for multi-way data) was used on the three-way 

fluorescence array to predict the load of microbes (TVC, Pseudomonas, Enterobacteriaceae

and Brochothrix thermosphacta) of chicken samples stored at 5 °C and 15 °C. 

For each storage temperature, N-PLS model (Bro, 1996) was constructed on 12 samples (2 

repetitions x 6 storage times) along with 9 offsets and an excitation wavelength ranging from 

250 to 550 nm. So, three-way data array was constructed (12 x 9 x 301) for each storage 

temperature. Similarly N-PLS regression was also tested on the 2 data sets merged together 

(two storage temperature), and for this purpose three-array was constructed on 24 samples (24 

x 9 x 301).  

Root mean square of prediction (RMSEP), recovery percentage and coefficient of 

determination (R2) were used as parameters to determine appropriate number of latent 

variables (LV) (Durante et al., 2006; Rezaei et al., 2009). In addition to cross-validated 

prediction of microbial load, N-PLS construct a structured array holding the N-PLS model, 

which could be used to plot the excitation spectra associated with each LV, to determine the 

optimal �� and to get the concentration mode associated with each LV (Diez et al., 2008). 
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3. Results 

3.1. Changes in microbial flora of fresh chicken breast samples stored aerobically at 5 

and 15 °C 

In this study we monitored the changes in microbial flora (TVC, Pseudomonas, 

Enterobacteriaceae and Brochothrix thermosphacta) of chicken breast fillets, which were 

stored aerobically at 5 and 15 °C for several days (table 1). Microbial growths were 

significantly different for the storage kinetics at 5°C and 15 °C. As TVC increased 

significantly from day 1 to day 8 for storage at 5°C reaching 8.4 log cfu/cm2, the microbial 

load reached a plateau after day 2 in the sample stored at 15 °C. 

Pseudomonas grew significantly from 0 to 8 day of storage at 5°C and became the dominant 

population on day 3 (7.4 log cfu/cm2) increasing up to 8.3 log cfu/cm2 on 8th day of storage. 

In case of samples stored at 15 °C, Pseudomonas counts reached a maximum (8.1 log 

cfu/cm2) after 2 days  of storage. 

Initial (0 day) counts of Enterobacteriaceae were 3.4 log cfu/cm2, which increased 

significantly from 1 to 8 days of storage at 5°C. However these bacteria reached a plateau 

after 2nd day of storage at 15°C .  

Brochothrix thermosphacta also showed increased of the counts during kinetics of storage: 

starting with an initial load of 2.9 log cfu/cm2, the final counts reached 8.0 log cfu/cm2 and 

7.4 log cfu/cm2 for storage at 5°C and 15°C, respectively. However, unlike other bacteria, 

Brochothrix thermosphacta population significantly kept on increasing until 5th day of storage 

at 15 °C. 
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3.2. Synchronous fluorescence spectra of meat samples stored at 5 and 15 °C 

Two dimensional synchronous fluorescence spectra of chicken fillet samples stored at 5°C for 

1, 3 and 5 days were shown in figure 1A. Visual differences were observed among the three 

spectra. The spectra obtained on the first day of storage showed two prominent peaks at about 

290 nm (�em = 410 nm) and 350 nm (�em = 470 nm) along with a fluorescent band at 445 –

470 nm (�em = 565 – 590 nm). The intensity of peak at about 290 nm decreased by increasing 

days of storage, and, in the same time, the intensity of the peak at about 350 nm (�em = 470 

nm) increased and became a fluorescent band at 325 – 350 nm (�em = 445 – 470 nm).  

Synchronous fluorescence spectra recorded at different offsets (40, 120 and 160 nm) on 

chicken fillet stored for 2 days at 5°C were shown in figure 1B. It appeared that each offset 

showed a particular set of peaks. The spectrum collected using an offset of 40 nm showed one 

prominent peak at 300 nm (�em = 340 nm), whereas the spectrum collected for an offset of 

120 nm showed a fluorescent band at 280 – 300 nm (�em = 400 – 420 nm), one peak at about 

350 nm (�em = 470 nm) and an other fluorescent band at 445 – 470 nm.  Finally, the spectrum 

recorded with an offset of 160 nm contained a prominent peak at 350 nm (�em = 510 nm) 

with a fluorescent region at 445 – 470 nm, but the peak at 300 nm has disappeared. 

3.3. Classification of chicken fillet samples according to their storage time from SFS 

spectra 

 The synchronous fluorescence data collected using different offsets during the storage kinetic 

at 5°C were combined (concatenation) into one data set . Another data set was built for 

spectral data collected during the storage kinetic at 15°C. PLSDA was applied on each data 

set in order to test the ability of the spectra to discriminate between each of the six storage 

times. 
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Calibration and validation results of the discriminant model using four factors made it 

possible to obtain 100 % of good classification at 5 °C (table 2). Similar results were obtained 

for the samples stored at 15 °C using a PLSDA model with 4 factors (data not shown).  

3.4. Decomposition of three way spectral data using PARAFAC 

Synchronous fluorescence data set were converted into 2 three–way fluorescence arrays (�� x 

samples x excitation spectra), i.e., one for each storage kinetic, and PARAFAC analysis was 

used to decompose these 2 matrices into the pure spectra of contributing fluorophores. For 

PARAFAC analysis performed on samples stored at 5°C for 0, 1, 2, 3, 5 and 8 days, the 

results of the core consistency diagnostic (table 3) showed 95 % robustness (and 99.7 % of 

explained variance) using 3 components. Adding a fourth component dropped core 

consistency values to 40 %, showing that the model was unstable or over fitted. Thus a 

PARAFAC model with 3 components was used to describe the matrix formed by spectra 

recorded at 5 °C. Loading profile of the first component of PARAFAC model showed 

maximum excitation at 292 nm (figure 2A), with an optimal �� of 60 nm. Similarly, the 

second component of PARAFAC model showed a maximum excitation peak at 302 nm 

(figure 2A) and an optimal �� of 20 nm (figure 2B). Finally, the loading profile of the third 

component of PARAFAC model was characterized by two excitation maxima at 268 nm and 

350 nm along with a fluorescent band at about 445 – 470 nm, and an optimal �� of 100 nm. 

Considering the loading profiles of the concentration mode (figure 2C) for the three 

components of PARAFAC model, an increase in fluorophore concentrations from 0 to 3 days 

of storage was observed, afterward they changed minutely until day 8 of storage. 

Core consistency diagnostic test applied to the spectral data of chicken samples stored at 15 

°C showed that, in this case, a model with two components was robust with 100 % core 

consistency value and 96.3 % of explained variance (table 3). If an additional component was 
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added, the core consistency values dropped to 35 %. Considering this PARAFAC model, the 

loading profile of first component showed an excitation maximum at 301 nm with an optimal 

�� of 40 nm, while the second component showed an excitation maximum at 280 nm (�� = 

80 nm) along a band at about 325 – 395 nm. 

We also constructed a matrix combining the two data sets obtained at 5 and 15 °C. In this 

case, a four component PARAFAC model was obtained with 55 % of core consistency and 

99.6 % of explained variance. The loading profiles of the four components (excitation and 

emission maxima) were given in table 4. The loading profile of the first component showed 

an excitation maximum at 295 (�� = 40 nm), the second component was characterized by two 

prominent peaks at 265 and 303 nm (�� = 20 nm), the third component showed a peak at 272 

nm (�� = 60 nm) and the fourth components showed two fluorescent peaks at 288 and 352 

nm (�� = 100 nm). 

   

3.5. Prediction of bacterial counts using N-PLS 

N-PLS regression method was applied on the three dimensional synchronous fluorescence 

spectral data in order to predict bacterial counts (TVC, Pseudomonas, Enterobacteriaceae and 

Brochothrix thermosphacta) found on chicken breast samples and the results of the prediction 

are presented in table 5.  

The results of N-PLS regression with cross validation applied for data recorded on chicken 

fillet samples stored at 5 °C showed that 99.9 % of the response variance (Y) (i.e. microbes) 

were explained by using more than 92 % of the explanatory variable (X). In addition, 

coefficient of determination of 0.99 was obtained using N-PLS models with 8, 7, 4 and 8 LV 

to predict TVC, Pseudomonas, Enterobacteriaceae and Brochothrix thermosphacta, 

respectively. The obtained results showed excellent recoveries (101 to 102 %) and small 
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errors of cross validation, i.e., 0.14, 0.2, 0.25 and 0.15 log cfu/cm2 for TVC, Pseudomonas, 

Enterobacteriaceae and Brochothrix thermosphacta, respectively. 

Graphical representations of loading profiles associated with first, second, third and fourth LV 

are shown in figure 3. It was observed that the 4 loading profiles, corresponding to TVC, 

Pseudomonas, Enterobacteriaceae and Brochothrix thermosphacta prediction, of the first LV 

of N-PLS model were similar for all responses, with a maximum peak at 300 nm and two 

fluorescence regions in 335 – 365 nm and 445 – 475 nm ranges (figure 3A), with an optimal 

�� of 40 nm. Figure 3B shows the 4 loading profiles associated with 2nd LV corresponding to 

the 4 bacteria to be predicted. In this case, the loading profiles presented some differences, but 

they all exhibited an optimal �� of 120 nm. First prominent positive fluorescent peak was 

observed at 270 – 300 nm in the spectral loading of TVC, Pseudomonas and

Enterobacteriaceae, whereas loading profile of Brochothrix thermosphacta showed a peak 

slightly shifted to higher wavelengths with a maximum at 296 nm. An other prominent 

negative peak was seen in the spectral loading of TVC, Pseudomonas, Enterobacteriaceae

and Brochothrix thermosphacta at 323 nm. This band was followed by a positive fluorescent 

band at about 400 – 435 nm and a negative one at 450 – 470 nm. Interestingly, the 2nd LV 

loading associated to Brochothrix thermosphacta showed a peak slightly shifted to higher 

wavelengths with a maximum at 428 nm compared with other considered bacteria. 

Figure 3C showed the loading profiles of the 3rd LV. Four positive fluorescence peaks were 

observed at about 263, 310, 370 and 437 nm, along a negative peak at 290 nm, a fluorescent 

band at about 335 – 350 nm and another negative peak at 405 nm. Loading profile 

corresponding to the four bacteria to be predicted showed fluorescent differences, they all 

hadan optimal �� of 120 nm except TVC, which contained an optimal �� of 140 nm. Finally, 

loading profiles associated to the 4th LV are shown in figure 3D. Negative fluorescent peaks 

were observed at about 263 nm, 310 nm and 370 nm and positive fluorescent peaks could be 
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seen at about 292 nm, 325 nm, 450 nm with a shoulder at about 420 nm for TVC, 

Pseudomonas, Enterobacteriaceae. Whereas, Brochothrix thermosphacta showed bands at 

similar wavelengths, but mostly in the opposite direction compared to the other investigated 

bacteria. In fact the profiles associated with 4th LV exhibited differences from one bacteria to 

another allowing to predict the counts of investigated bacteria. An optimal �� of 120 nm was 

observed for all loading profiles of bacteria. 

N-PLS regression was also carried out using data recorded on chicken breast samples stored 

at 15 °C for 0, 0.5, 1, 2, 3 and 5 days. From the results, it could be noted that 99.9 % of 

response variance was explained by about 91 % of explanatory variance using 6 LV. In 

addition, N-PLS model gave low RMSEP values, coefficients of determination of 0.99 and 

percentages of recovery in the 100 to 101 % range (table 5). 

N-PLS regression was also carried out on the matrix gathering all the spectra collected during 

the kinetics at 5 and 15 °C. As shown table 5, the results showed good correlations (0.95 for 

TVC and Brochothrix thermosphacta, 0.94 for Pseudomonas and Enterobacteriaceae) and 

high percentages of recovery (100 % for TVC and Enterobacteriaceae, and 101 % for 

Pseudomonas and Brochothrix thermosphacta ). 
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4. Discussion 

Determination of microbial spoilage is traditionally performed by culture dependant methods 

which are no doubt reliable but are time consuming, costly and destructive, which make them 

irrelevant for rapid and on-line analysis. Sensory analysis is also often used to evaluate the 

freshness/spoilage of meat and meat products. The disadvantages of sensory analysis are its 

reliance on highly trained panelists, which makes it costly and unattractive for routine 

application. Today there is a need to establish rapid and innovative methods based on 

biochemical changes occurring in the meat (microbial metabolic products etc.), as a tool to 

assess meat spoilage (Ammor et al., 2009), or on the direct determinations of the different 

bacteria present at the surface of spoiled meat.  

Knowing the fact that microorganisms grow on the surface of the chicken muscles and form 

biofilms, the most popular way to sample them on the meat surface is swab test (Martinez et 

al., 2009). In this study we determined microbial loads of chicken breast samples using 

traditional methods following sampling using the swab test. Low initial load of microbes of 

chicken fillet samples determined by traditional methods, suggested overall good hygienic 

conditions and safety practices applied at the poultry slaughterhouse (Balamatsia et al., 2006). 

In this experiment, initial loads of Enterobacteriaceae and TVC (3.4 log cfu/cm2) were higher 

than Pseudomonas and Brochothrix thermosphacta (2.9 log cfu/cm2). Although Pseudomonas

had low initial load, it became the most prominent microbe (7.4 log cfu/cm2) on third day of 

storage at 5°C. It has already been cited that Pseudomonas grow faster in aerobic storage and 

at low temperature than other bacteria, and remain dominant (Gill and Newton, 1977). 

Considering meat samples stored at 15 °C, Enterobacteriaceae were the dominant bacteria. 

This is in agreement with the results reported by (Huis In't Veld, 1996; Liu et al., 2006).  
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It has been reported that the first sign of product deterioration (off-odor) started when TVC 

reached 7 log cfu/cm2 (Balamatsia et al., 2006). When surface population of bacteria reached 

8 log cfu/cm2, simple carbohydrates were almost exhausted leading to sensory spoilage (Ellis 

and Goodacre, 2001). Our results showed TVC of 8.4 and 8.3 log cfu/cm2 for the samples 

stored at 5 °C (8th day) and 15 °C (2nd day), respectively, showing upper acceptability limits 

for fresh poultry meat (Patsias et al., 2006).  

Fourier transform infrared spectroscopy has already been used for the monitoring of the meat 

spoilage kinetics (Ammor et al., 2009; Ellis et al., 2004; Ellis and Goodacre, 2001). Recently 

fluorescence spectroscopy emerged as a rapid, easy to use and non-destructive analytical 

technique for the prediction of cheese texture (Karoui et al., 2003), the authentication of food 

products (Karoui et al., 2004) and the identification of bacteria (Leblanc and Dufour, 2002; 

Tourkya et al., 2009). As fluorescence spectroscopy is very specific, sensitive and allows 

measurements in ppm range of compounds in food products (Karoui et al., 2004; Kulmyrzaev 

and Dufour, 2002; Kulmyrzaev et al., 2007), it might be a good candidate for the 

determination of spoilage on the meat surface.  

Indeed, fluorescence spectroscopy offers several inherent advantages. First, it is 100-1000 

times more sensitive than other spectrophotometric techniques. Second, fluorescent 

compounds extensively represented in muscle and bacteria cells are extremely sensitive to 

their environment. This environmental sensitivity enables characterization of conformational 

changes such as those attributable to the thermal, solvent or surface denaturation of proteins, 

as well as the interactions of proteins with other food components. Third, most fluorescence 

methods are relatively rapid and a spectrum is recorded in less than 1 second with a CCD 

detector. Moreover, front-face or surface fluorescence spectroscopy developed at the end of 

the sixties (Parker, 1968) allows the investigation of the fluorescence properties of powdered, 

turbid and concentrated samples. In this case, the surface of the samples is simply illuminated 
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by excitation light, and the emitted fluorescence from the same surface is measured. Due to 

the high absorbance of these samples, all the photons are absorbed by the first 100th microns 

of the sample (Genot et al., 1992). 

In this study front-face synchronous fluorescence spectroscopy was used to monitor the 

microbial spoilage on the surface of chicken fillets stored at 5 and 15 °C. Visual differences 

could be noted among various spectra collected on the samples which were stored at 5 and 15 

°C, showing the potential of SFS to differentiate among different samples stored in different 

storage conditions. Appearance and disappearance of certain peaks as a function of offset 

values show the ability of SFS to explore the sample in an efficient way and that, in a given 

spectrum, information can be gathered on different fluorophores present in the sample. This 

suggests the potential of synchronous fluorescence spectra to discriminate between times and 

temperatures of storage of chicken fillets. PLSDA has been used to investigate the ability to 

discriminate the six storage times from the fluorescence spectra. Considering PLSDA results, 

100% of good classification of the samples have been obtained for the kinetics performed 

either at 5°C or 15°C. These results confirm the capability of SFS spectra to capture the 

changes occurring at the surface of chicken muscles during storage kinetics. 

As mentioned above, a synchronous fluorescence spectrum exhibits peaks corresponding to 

several different fluorophores that are present at the surface of the sample. In order to identify 

these fluorophores, PARAFAC analysis has been applied on the three-way fluorescence array. 

This method decomposes the fluorescence landscapes into trilinear components according to 

the number of fluorophores present in the sample and the loading profiles could be related to 

the fluorescence characteristics of fluorophores. Thus, excitation and emission wavelengths of 

loading profiles could be used for the interpretation and identification of the fluorophores 

(Christensen et al., 2005).  
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The main intrinsic fluorophores retained by bacteria (Leblanc and Dufour, 2002), as well as 

by muscular cells (Skjervold et al., 2003), include aromatic amino acids, nucleic acids, 

vitamins and some co-enzymes. Among aromatic amino acids, tryptophan in proteins is 

fluorescent at an excitation of 295 nm, whereas at an excitation range of 280 – 295 nm both 

tyrosine and tryptophan are fluorescent. In addition, phenylalanine shows fluorescence along 

with tyrosine and tryptophan from 250 to 260 nm (Tourkya et al., 2009). Nucleic acids also 

exhibit fluorescence, but their quantum yields are lower than aromatic amino acids (Leblanc 

and Dufour, 2002). In order to discriminate bacteria or investigate the metabolic activities of 

bacterial cells, NADH could be used as a marker (Leblanc and Dufour, 2002). NADH is 

highly fluorescent following excitation at about 340 nm (emission: 440 nm). Similarly, 

Skjervold et al (2003) have identified several fluorophores in meat, i.e., tryptophan (exc.: 290 

nm/em.: 332 nm) in proteins of meat myofibrils, vitamin A (exc.: 322 nm/em.: 440 nm) in fats 

and pyroindoline (exc.: 380 nm/em.: 440 nm) in connective tissue.  

Considering the PARAFAC model with 3 components describing the matrix formed by 

spectra recorded at 5 °C, the loading profile of the first component with a maximum 

excitation at 292 nm (optimal �� of 60 nm) corresponds well with the fluorescence 

characteristics of tryptophan residues in proteins (from meat and bacteria) reported in the 

literature. Similarly, the loading profile of the third component characterized by two 

excitation maxima at 268 nm and 350 nm (optimal �� of 100 nm) can be assigned to NADH 

of bacteria as reported by Leblanc and Dufour (2002). Regarding the loading profile of the 

second component, fluorophore with a maximum excitation peak at 302 nm and an optimal 

�� of 20 nm has never been reported in the literature from our knowledge. 

The loading in sample mode (Fig. 2C) represents the concentration mode for each 

fluorophore. For the spectral data recorded during the storage kinetic at 5°C, the 

concentrations of the 3 components increase between 0 and 3 days, then the concentrations of 
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components 1 and 2 remain constant till 8 days, and the one of component 3 slightly 

decreases. These changes in concentration mode of the 3 components parallel well with 

microbial growth at 5 °C (table 1), i.e., TVC counts drastically increase from day 0 to day 3 

and then they slightly increase till day 8. The results of PARAFAC analysis in concentration 

mode suggest that synchronous fluorescence spectra retain information that is correlated to 

the bacterial counts determined during the storage kinetics of chicken fillets. It has also been 

shown that part of the information retains in the synchronous fluorescence spectra may 

originate from fluorophores found in bacteria such as NADH. For the other identified 

fluorophore, i.e., tryptophan, the recorded signal may come from bacteria, as well as from 

muscle cells. 

It indicates that synchronous fluorescence spectra can be used to predict the loads of the 

different bacteria investigated (Total Viable Count, Pseudomonas, Enterobacteriaceae and 

Brochothrix thermosphacta). N-PLS regression method has been used to correlate the results 

of microbial data and three dimensional synchronous fluorescence data. For Total Viable 

Count, Pseudomonas, Enterobacteriaceae and Brochothrix thermosphacta, good average 

recoveries (101-102%), excellent correlations (R2 = 0.99) and very small root mean squares 

(between 0.1 and 0.2 log cfu/cm²) of prediction were obtained from the data sets obtained at 

5°C and 15°C. These results confirm that the synchronous fluorescence spectra contain 

information that is related to bacteria found on the surface of meat and, in addition, there is 

information that is specific to a given genus allowing to predict its count. Indeed, it has been 

shown that an emission spectrum recorded on a given bacteria is a fingerprint allowing its 

identification (Leblanc and Dufour, 2002; Tourkya et al., 2009). Synchronous fluorescence 

spectra show that it is also possible to identify and to quantify a given bacteria in a mixture, 

without any prior isolation. This is made possible because the loading profiles associated with 

LVs of the N-PLS models exhibit specific profiles. If the first LV is considered (Figure 3A), 
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all the four loading profiles superimpose. But it has already been referred that loading profile 

of the first LV of N-PLS model remained similar for all responses (Diez et al., 2008; Guimet 

et al., 2005c). Considering the second LV, the loading profiles (Figure 3B) associated to 

TVC, Pseudomonas, Enterobacteriaceae are similar, whereas the one corresponding to 

Brochothrix thermosphacta present large differences. These differences in the discriminant 

wavelengths forming the 2nd LV allow to discriminate Brochothrix thermosphacta, a gram-

positive bacteria, from other ones. The 3rd LV also shows spectral differences among the four 

studied bacteria: it separated TVC from the other bacteria because loading profile of TVC had 

an optimal �� of 140 nm, while loading profiles of all other bacteria had an optimal �� of 120 

nm. The loading profiles associated with 4th LV corresponding to the 4 bacteria clearly 

separated Brochothrix thermosphacta from all others as fluorescent peaks corresponded to 

Brochothrix thermosphacta are always in opposition to the other bacteria, thus separating a 

gram positive from the rest of the bacteria present on the surface of chicken fillet. In addition, 

the profiles associated to TVC, Pseudomonas, and Enterobacteriaceae show differences in 

the shapes of the bands. It is concluded that synchronous fluorescence spectra retain 

information which is specific to each of the investigated bacteria and that can be taken out 

using chemometric methods. 

5. Conclusions 

In this research study we presented the potential of SFS along with chemometrics for the 

determination of microbial load on the surface of chicken fillets stored at 5 and 15 °C. SFS is 

capable to reveal changes in fluorescence of meat surface during storage kinetics and PLSDA 

performed on SFS spectra allow to classify the samples correctly (100 % of good 
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classification) according to their storage time. We have also shown that PARAFAC allow to 

derive lot of information about 3-way fluorescence matrices and results strongly suggest that 

the spectral information is originating from bacteria present at the surface of chicken fillets. 

N-PLS regression makes it possible to predict each studied bacteria count from SFS data with 

a good accuracy. The loading profiles associated with LVs confirm that the three dimensional 

synchronous fluorescence spectral data recorded directly at the surface of chicken fillets retain 

specific information on the investigated bacteria (Total Viable Count, Pseudomonas, 

Enterobacteriaceae and Brochothrix thermosphacta). Thus SFS coupled with chemometrics 

could be used as an innovative method to monitor the microbial changes taking place in meat 

during storage.     
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Legends of figures 

Figure 1. Synchronous fluorescence spectra of chicken fillets (A) stored for 1, 3 and 5 days at 

5 °C (�� = 120 nm), and (B) stored for 2 days at 5 °C  with �� = 40, 120 and 160 nm. 

Figure 2. Three components non-negativity constraint PARAFAC model constructed on 

synchronous fluorescence spectra of chicken breast samples stored at 5 °C for 0, 1, 2, 3 and 5 

days. (A) Loading profiles, (B) �� profiles and (C) concentration modes. 

Figure 3. Loading profiles associated to the first 4 LVs of N-PLS model for the chicken 

samples stored at 5 °C for 0, 1, 2, 3 and 5 days. (A) 1st LV, (B) 2nd LV, (C) 3rd LV, (D) 4th

LV. 
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Figure 1. Synchronous fluorescence spectra of meat (A). stored for 1, 3 and 5 days at 5 °C (��

= 120 nm), and (B) stored for 2 days at 5 °C (�� = 40, 120 and 160 nm). 
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Figure 2. Three components non-negativity constraint PARAFAC model constructed on 

synchronous fluorescence spectra of chicken breast samples stored at 5 °C for 0, 1, 2, 3 and 5 

days. (A) Loading profile, (B) �� profile and (C) concentration mode. 
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Figure 3. Loading profile of N-PLS model for the meat sample stored at 5 °C for 0, 1, 2, 3 and 

5 days (A) 1st LV, (B) 2nd LV, (C) 3rd LV, (D) 4th LV. 
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Table 1. Changes in microbial flora of chicken breast samples stored at 5 and 15 °C under 

aerobic conditions. 

Mean values + standard error 

abcdef and ABCDEF Means microbial flora within a column with the same superscripts are not 

significantly different (P < 0.01). 

Storage Time 
(days)

Total Viable 
Counts Pseudomonas Enterobacteriaceae

Brochothrix 
thermosphacta

0 3.4a + 0.01 2.9a + 0.08 3.4a + 0.05 2.9a + 0.05

1 5.6b + 0.02 5.6b + 0.02 5.3b + 0.01 4.9b + 0.02

2 5.9c + 0.02 6.2c + 0.04 6.4c + 0.06 5.4c + 0.05

3 7.2d + 0.06 7.4d + 0.03 7.2d + 0.08 5.6d + 0.01

5 7.9e + 0.03 7.6e + 0.01 7.7e + 0.02 7.7e + 0.04

8 8.4f + 0.02 8.3f + 0.14 8.4f + 0.05 8.0f + 0.03

0 3.4A + 0.01 2.9A + 0.08 3.4A + 0.05 2.9A + 0.05

0.5 4.1B + 0.02 4.2B + 0.02 4.4B + 0.01 3.5B + 0.01

1 5.5C + 0.08 5.4C + 0.01 5.6C + 0.01 4.4C + 0.01

2 8.3D + 0.06 8.1D + 0.03 8.3D + 0.06 6.9D + 0.01

3 8.5E + 0.06 8.1D + 0.01 8.4D + 0.02 7.2E + 0.01

5 8.5E + 0.04 8.0D + 0.04 8.3D + 0.06 7.4F + 0.03

Storage temperature 5 °C

Storage temperature 15 °C

Microbial analysis (log cfu/cm2)
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Table 2. Results of calibration and validation sets of partial least square discriminant analysis 

carried out on concatenation synchronous fluorescence spectra of the chicken breast samples 

stored at 5 °C for 0, 1, 2, 3, 5 and 8 days, using 4 factors (rows: observed classification; 

columns: predicted classification). 

0 1 0 0 0 0 0 100
1 0 1 0 0 0 0 100
2 0 0 1 0 0 0 100
3 0 0 0 1 0 0 100
5 0 0 0 0 1 0 100
8 0 0 0 0 0 1 100

0 1 0 0 0 0 0 100
1 0 1 0 0 0 0 100
2 0 0 1 0 0 0 100
3 0 0 0 1 0 0 100
5 0 0 0 0 1 0 100
8 0 0 0 0 0 1 100

Calibration

0 1 2 3 5 8
% of good 

classification

Validation

Groups
0 1 2 3 5 8

% of good 
classification
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Table 3. Core consistency and explained variance percentage resulting from PARAFAC 

models. 

No. of 
Factors

Core 
consistency (%)

Explained 
variance (%)

Core 
consistency (%)

Explained 
variance (%)

Core 
consistency (%)

Explained 
variance (%)

1 100 94.2 100 92.4 100 93.3

2 100 97.6 100 96.3 100 96.8

3 95 99.7 35 99.2 65 99.4

4 40 99.8 30 99.5 55 99.6

5 0 99.9 0 99.7 5 99.8

5 °C 15 °C All samples (5 °C and 15 °C) 
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Table 4. Excitation and emission maxima wavelengths of PARAFAC components derived 

from synchronous fluorescence spectra recorded on chicken breast samples. 

PARAFAC 
factor number

15°C
All samples (5°C 

and 15°C)

1 301/341 295/335

2
280/360, 325-
395/405-475

265/285, 303/323

3 - 272/332

4 - 288/388, 352/452

a
�max.exc./�max.emi. (nm)
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Table 5. Results of N-PLS regression between microbial data determined by culture 

dependent method and synchronous florescence spectra of chicken breast samples. 

aLV bX-Block cY-Block dRMSEP eR2 fRec (%)

5 °C

Total Viable Counts 8 92.5 99.9 0.14 0.99 101

Pseudomonas 7 93.4 99.9 0.2 0.99 102

Enterobacteriaceae 4 92.3 99.9 0.25 0.99 102

Brochothrix thermosphacta 7 93.2 99.9 0.15 0.99 101

15 °C

Total Viable Counts 6 91.6 99.9 0.18 0.99 100

Pseudomonas 6 90.8 99.9 0.21 0.99 101

Enterobacteriaceae 6 91 99.9 0.17 0.99 100

Brochothrix thermosphacta 6 91.2 99.9 0.11 0.99 100

All samples 
(5 and 15 °C)

Total Viable Counts 10 98.5 99.9 0.37 0.95 100

Pseudomonas 10 99.1 99.9 0.44 0.94 101

Enterobacteriaceae 10 98.5 99.9 0.43 0.94 100

Brochothrix thermosphacta 10 99.2 99.9 0.38 0.95 101

Microbes 
Results obtained by N-PLS models   
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Abstract 

In this work potential of mid infrared (MIR) spectroscopy was investigated for the 

determination of microbial load on chicken breast fillets stored aerobically at 5 °C during 0, 1, 

2, 3, 5 and 8 days, and 15 °C for 0, 0.5, 1, 2, 3 and 5 days. We showed that MIR spectroscopy 

can be used directly on the surface of meat samples to produce interpretable fingerprints 

related to the microbial biofilms developing at their surface. Total viable count (TVC), 

Pseudomonas, Enterobacteriaceae and Brochothrix thermosphacta were determined on 

chicken breast fillets at each step of the 2 kinetics using culture dependent methods. Initial 

TVC was 3.4 log cfu/cm² and TVC reached 8.4 log cfu/cm² and 8.3 log cfu/cm² following 8 

days at 5°C and 2 days at 15°C, respectively. In parallel, MIR spectra were recorded (4000 – 

700 cm-1 range). PLSDA (partial least square discriminant analysis) was carried out to test the 

reallocation of the spectra of the individual samples within the six groups corresponding to 

the six investigated storage times and the results showed that 100 % of good classifications 

were obtained using 4 PLS factors. PLS regression was used to predict the microbial counts 

for TVC, Pseudomonas, Enterobacteriaceae and Brochothrix thermosphacta from the MIR 

spectral data. An excellent correlations (R2 = 0.99) and very small root mean squares error 

(between 0.01 and 0.97 log cfu/cm²) of validation were obtained from the spectral data sets 

recorded on samples stored at 5°C and 15°C for TVC, Pseudomonas, Enterobacteriaceae and 

Brochothrix thermosphacta. Thus MIR spectroscopy is capable to acquire rapidly a microbial 

snapshot present at the surface of meat and to quantify the microbial loads of meat samples 

accurately. 

Key words: mid infrared spectroscopy; aerobic storage; chicken; microbes; 
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1. Introduction 

Meat is one of the most perishable foods, and its composition is ideal for the growth of 

a wide range of spoilage bacteria. Meat is believed to be spoiled if organoleptic changes make 

them unacceptable to the consumer. These changes include discoloration, development of off-

odors, slime formation, changes in taste etc. The initial mesophilic bacterial count on meat is 

about 102 – 103 cfu/cm2 or gram, consisting of a large variety of species (Borch, Kant-

Muermans & Blixt, 1996). At a levels of 107 cfu/cm2 off-odors become evident and once the 

population of bacteria has reached 108 cfu/cm2, the supply of simple carbohydrates has been 

exhausted and it reached to sensory spoilage (Ellis & Goodacre, 2001). 

Spoilage organisms primarily belong to the genus Pseudomonas, as they attach more 

rapidly to meat surfaces compared to other spoilage bacteria. Other major members of the 

spoilage flora of meat stored aerobically include Enterobacteriaceae, Moraxella spp., 

Psychrobacter spp. and Acinetobacter spp. (Otero, Garcia-Lopez & Moreno, 1998). Whilst 

the dominant spoilage microflora are generally Gram-negative, the initial population also 

contain Gram-positive bacteria such as lactic acid bacteria and Brochothrix thermosphacta

(Ellis & Goodacre, 2001). 

Spoilage of raw meat accounts for major annual losses to processors and retailers. 

Current methods used for microbial detection are time-consuming and labor intensive. For 

example, classical method used for determining the status of meat, with respect to spoilage, is 

the analysis of the total viable counts (TVC) and/or specific spoilage bacteria. An obvious 

drawback with this method is the incubation period of 1 to 3 days that is required for colony 
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formation. There is a need to replace these classical methods with some rapid, reagentless, 

relatively inexpensive and non destructive innovative methods. 

The application of various vibrational spectroscopic techniques has been used to 

identify and characterize microorganisms (Al-Holy, Lin, Al-Qadiri, Cavinato & Rasco, 2006; 

Lin, et al., 2004). Fourier transform infrared spectroscopy in mid infrared (MIR) region has 

been presented as a rapid and non invasive technique in clinical applications (Naumann, 

Fijala, Labischinski & Giesbrecht, 1988) and in food industries (Amiel, Mariey, Curk-Daubié, 

Pichon & Travert, 2000; Lefier, Lamprell & Mazerolles, 2000). It involves the vibrations of 

molecules that are excited by an infrared beam, and an infrared absorbance spectrum is 

considered as a fingerprint, which is characteristic of any chemical or biochemical substance 

(Ellis, Broadhurst, Kell, Rowland & Goodacre, 2002; Gillie, Hochlowski & Arbuckle-Keil, 

2000). Vibrational spectroscopy is capable to measure the biochemical changes within the 

meat substrate and it can be used to exploit the information about the decomposition of the 

meat and formation of metabolites by microorganisms. This technique has already been used 

to discriminate and identify the pathogenic (Beattie, Holt, Hirst, Sutherland & MacDonald, 

1998) and spoilage microorganisms in food (Amiel, et al., 2000). Recently this technique has 

been used to detect the bacterial spoilage of meat under aerobic (Ellis, Broadhurst & 

Goodacre, 2004) and different storage conditions (Ammor, Argyri & Nychas, 2009). MIR 

represents the spectrum of the absorption of all the chemical bonds having an infrared activity 

between 4000 and 400 cm-1. Differences in the structure and quantity of cell wall 

polysaccharide, lipids and protein are reflected in the MIR spectra, which can be used for the 

differentiation among different bacteria. The acyl-chain is mainly responsible for the 

absorption observed between 3000 and 2800 cm-1, whereas the peptidic bound CO-NH is 

mainly responsible of the absorption occurring between 1700 and 1500 cm-1. But water also 
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strongly absorbs in the Amide I region. Finally, the 1500 and 900 cm-1 region is known to 

exhibit bands attributed to polysaccharides, peptidic bonds and phosphate.  

In order to interpret the molecular structural information present in complex spectra 

and to correlate it to the microbial composition, various multivariate statistical tools have 

been used (Burgula, et al., 2007). The use of analytical technique couple with chemometrics 

has been used for various foods (Ammor, et al., 2009; Dupuy, et al., 2005).  

The aim of present research work was to explore the potential of MIR spectroscopy 

coupled with chemometrics to detect the changes in microbial flora, i.e., TVC, Pseudomonas, 

Enterobacteriaceae and Brochothrix thermosphacta, occurring in chicken breast fillets during 

aerobic storage kinetics at 5 (0, 1, 2, 3, 5 and 8 days) and 15 °C (0, 0.5, 1, 2, 3 and 5 days), 

and to predict the microbial counts, i.e., TVC, Pseudomonas, Enterobacteriaceae and 

Brochothrix thermosphacta, from MIR spectra. 
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2. Materials and methods 

2.1. Sampling and storage conditions 

21 chicken breast fillets without skin were purchased from a local super-market 

(CORA, Lempdes) in packed form and transported to the laboratory within 20 minutes. One 

sample was analyzed immediately and it was considered as the starting points of the storage 

kinetics. Samples were stored aerobically by enclosing them into permeable polyethylene 

bags. The samples were divided into two lots (10 fillets/lot) and packed individually 

(1fillet/pouch). One lot (10 fillets) of chicken breast samples was stored at 5 °C and analyzed 

on 1, 2, 3, 5 and 8 days of storage, while the other lot (10 fillets) was stored at 15 °C for 

analysis on 0.5, 1, 2, 3 and 5 days of storage. For analysis, one pouch was used for microbial 

determination and an other for collection of mid infrared spectra. 

2.2. Microbiological analysis 

Samples were taken aseptically from the pouch and placed on a clean and aseptic place 

at room temperature. The chicken fillet was sampled by swab test using sterile cotton wool 

swabs held by a stick (ISO, 18593). These swabs were moistened with 0.1 % peptone water. 

An area of 50 cm2 was marked with a sterile frame of 5 cm x 10 cm. The swabs were rubbed 

on the marked sites continuously for about 30 seconds and then put into distilled screw-

capped test tube containing 10 ml of peptone water (BK018). For uniform distribution of 

microorganisms, these test tubes were shaken well using vortex mixer for about 30 seconds. 

Tenfold serial dilutions up to 10-5 (increased with increasing storage time) were prepared for 

all samples. For microbial enumeration, 50 µl of serial decimal dilutions of poultry 
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homogenates was plated on the surface of respective media plate using spiral plate technique 

(NF, V 08-100). 

TVC were determined by incubating 50 µl of appropriate dilution on plate count agar 

for 72 hours at 25 °C (ISO, 2293). Pseudomonas was enumerated on Cetrimide, Fucidine and 

Cephaloridine (CFC) agar and incubating 50 µl of dilution at 25 °C for 48 hours (ISO, 

13720). Members of Enterobacteriaceae family were determined by inoculated 50 µl of the 

suitable dilution on Violet Red Bile Dextrose Agar (VRBDA) for 24 hours at 30°C (ISO, 

5552). Streptomycin Tallium Actidione Agar (STAA) was used to determine Brochothrix 

thermosphacta by incubation of the plates at 20 °C for 72 hours (ISO, 13722). Two replicates 

of at least five appropriate dilutions (depending on the day of sampling) were enumerated. All 

plates were visually analyzed for morphology and typical colony types associated with each 

growth medium. Actual colony counts (cfu/cm2) of microbiological data were transformed to 

logarithmic values. 

2.3. Mid infrared spectra 

MIR spectra were recorded between 4000 – 700 cm-1 at a resolution of 4 cm-1 on a 

Fourier transform spectrometer (Thermo Optek, Nicolet, Trappes, France) mounted with an 

attenuated total reflection (ATR) accessory equipped with a grip. The ATR cell was made of 

horizontal ZnSe crystal. A slice of meat sample (8 cm x 1 cm x 0.5 cm) was placed on the 

crystal, a pressure on the grip ensuring a good contact between the crystal and the sample was 

applied. Before each measurement, the spectrum of the ZnSe crystal was recorded and used as 

background. For each experimental sample, two spectra were recorded. 
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In this study, the MIR spectra were divided into three regions: 3000 – 2800 cm-1, 1700 – 1500 

cm-1 and 1500 – 1000 cm-1 (Karoui, et al., 2005). 

2.4. Chemometrics 

2.4.1. Pre-treatment of spectra 

Baseline correction was applied to the spectra using MatLab software. 

2.4.2. Analysis of variance (ANOVA) 

Statistical analysis of microbial data was carried out using STATISTICA software. 

Significance differences of the growth of each microbe during storage was determined by 

analysis of variance (ANOVA) using the least square difference method (Fisher test). 

Differences were considered significant at P < 0.01 level. 

2.4.3. Discriminant analysis (PLSDA) 

Partial least square discriminant analysis (PLSDA) with cross validation were 

performed on MIR spectral data in MATLAB (The Mathworks Inc., Natic, MA, USA) using 

‘Saisir’ package available on-line (http://easy-chemometrics.fr). The aim of this technique is 

to predict the membership of an individual to a qualitative group defined as a preliminary 

(Vigneau, Qannari, Jaillais, Mazerolles & Bertrand, 2006). Chicken breast samples were 

classified into six groups, according to their storage time, i.e., 0, 1, 2, 3, 5 and 8 days for 5°C, 

or 0, 0.5, 1, 2, 3 and 5 days for 15 °C. The PLSDA assesses new synthetic variables called 
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loading factors, which are linear combinations of the initial variables and allows a better 

separation of the centres of gravity of the considered groups. The method allows the 

individual samples to be reallocated within the various groups. Comparison of the predicted 

groups to the real group is an indicator of the quality of the discrimination and it is valued as 

the percentage of correct classification. The spectral collection was divided into two groups: 

two-thirds of the investigated chicken breast samples were used for the calibration set and 

one-third for validation set. 

2.4.4. PLS regression method 

PLS regression with cross validation (Vigneau, et al., 2006) was used to find the 

fundamental relations between two matrices i.e. MIR spectra and microbial load (TVC, 

Pseudomonas, Enterobacteriaceae and Brochothrix thermosphacta) on chicken breast 

samples stored at 5 °C and 15 °C. Root mean square error of calibration (RMSEC) and 

validation (RMSEV) and coefficient of determination (R2) of calibration and validation, were 

determined. 
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3. Results and discussions 

3.1. Changes in microbial flora of fresh chicken breast samples stored aerobically at 5 

and 15 °C 

Table 1 showed the changes in microbial flora (TVC, Pseudomonas, 

Enterobacteriaceae and Brochothrix thermosphacta) of chicken breast fillets, which were 

stored aerobically at 5 and 15 °C for several days.

Results obtained from traditional methods showed that the initial load of microbes is 

quite low on chicken samples, it suggested an overall good hygienic conditions and safety 

practices applied at the poultry slaughterhouse (Balamatsia, Paleologos, Kontominas & 

Savvaidis, 2006). Microbial growths were significantly different for the storage kinetics at 

5°C and 15 °C. As TVC increased significantly from day 1 to day 8 for storage at 5°C 

reaching 8.4 log cfu/cm2, the microbial load reached a plateau (8.3 log cfu/cm²) after day 2 in 

the sample stored at 15 °C, showing upper acceptability limits for chicken meat (Patsias, 

Chouliara, Badeka, Savvaidis & Kontominas, 2006). 

Pseudomonas grew significantly from 0 to 8 day of storage at 5°C and became the 

dominant population on day 3 (7.4 log cfu/cm2) increasing up to 8.3 log cfu/cm2 on 8th day of 

storage. In case of samples stored at 15 °C, Pseudomonas counts reached a maximum (8.1 log 

cfu/cm2) after 2 days  of storage. Although Pseudomonas had low initial load, it became the 

most prominent microbe (7.4 log cfu/cm2) on third day of storage at 5°C which was in 

accordance to (Gill & Newton, 1977) who showed that Pseudomonas grow faster in aerobic 

storage and at low temperature than other bacteria, and remain dominant in microflora. 
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Initial (0 day) counts of Enterobacteriaceae were 3.4 log cfu/cm2, which increased 

significantly from 1 to 8 days of storage at 5°C. However these bacteria reached a plateau 

after 2nd day of storage at 15°C (Huis in't Veld, 1996; Liu, Yang & Li, 2006). 

Brochothrix thermosphacta also showed increased of the counts during kinetics of 

storage: starting with an initial load of 2.9 log cfu/cm2, the final counts reached 8.0 log 

cfu/cm2 and 7.4 log cfu/cm2 for storage at 5°C and 15°C, respectively. However, unlike other 

bacteria, Brochothrix thermosphacta population significantly kept on increasing until 5th day 

of storage at 15 °C. 

3.2. Mid infrared spectra of meat samples stored at 5 and 15 °C 

Most of the spectral information useful for the analysis of MIR spectra is located in 

three regions (Karoui, Dufour & De Baerdemaeker, 2006).  

The 3000 – 2800 cm-1 range correspond to the C-H bond of methyl and methylene 

groups of molecules and these bands are mainly attributed to fatty acids of lipids and 

phospholipids (Casal & Mantsch, 1984). Four bands at about 2961, 2925, 2870 and 2853 cm-1

can be seen in MIR spectra recorded on chicken breast sample at 5 °C on 0, 2 and 5 days of 

storage (figure 1C). The maximum absorbance of the 4 bands were decreasing from 0 day to 5 

days. 

The 1700 – 1500 cm-1 region is characterized by the presence of amide I and II bands 

related to  proteins and by the absorbance of water at about 1640 cm-1. Amide I band, which is 
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used to investigate the secondary structure of proteins (Dousseau & Pézolet, 1990), can be 

observed at 1638 cm-1 (figure 1B). The absorbance at 1638 cm-1 might also originate from the 

water (O-H) in meat samples (Ammor, et al., 2009). An other band at 1550 cm-1 was observed 

which is generally assigned to amide II vibrations of proteins. Interestingly, the absorbance at 

1640 and 1550 cm-1 are increasing from 0 day to 5 days. As the absorbance of both Amide I 

and II bands were higher after 5 days storage it was suggested that it was resulted from 

proteins. 

The 1500 – 1000 cm-1 region is called the fingerprint region and numerous chemical 

bonds are absorbed in the region. No apparent differences were found in bands present at 

about 1456 (asymmetric CH3 and CH2 bending mode (Al-Holy, et al., 2006)), 1396, 1310, and 

1236 cm-1. However most of the bands between 1280 and 1100 cm-1 showed clear differences 

in the MIR spectra of chicken samples taken on 0, 2 and 5 days of storage (figure 1A). From 

previous studies, it has been shown that bands at about 1100, 1150 and 1250 cm-1 were related 

to phosphate absorbance (Boubellouta, Galtier & E., 2009). 

The absorbances in the 1280 and 1100 cm-1 region are decreasing, as it was observed 

for 3000 – 2800 cm-1 range. Visual differences among various spectral peaks of the samples 

which were stored at 5 and 15 °C, showed the potential of MIR to differentiate among 

different samples during aerobic storage. 

As the evanescent wave is penetrating by several microns in the sample placed on the ZnSe 

crystal, it is hypothesized that the spectra mainly retain information from bacterial biofilms 

located on the surface of chicken filets. 
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3.3. Classification of chicken fillet samples according to their storage time from MIR 

spectra 

Each region of MIR spectral data collected during the storage kinetic at 5 °C and 15 

°C were evaluated using PLSDA in order to test the ability of MIR spectra to discriminate 

among each of the six storage times.  

Considering the storage kinetic at 5°C, PLSDA using four factors applied on the 3 

MIR data sets (3000-2800 cm-1, 1700-1500 cm-1 and 1500-1000 cm-1) made it possible to 

obtain 100 % of good classification for calibration and validation sets (table 2). Similar results 

were obtained for the samples stored at 15 °C using a PLSDA model with 4 factors (data not 

shown). 

These results showed the potential of MIR spectroscopy to completely discriminate 

among the samples stored for different periods of time. The spectra retain information that is 

related to the changes of chicken filets during the kinetics of storage. During the time of 

storage, the bacterial loads increased from 3.4 log cfu/cm² to 8.5 log cfu/cm² and, considering 

the use of ATR sample holder, it is suggested that the spectra mainly retain information 

originating from the bacterial biofilms. 

3.4. Prediction of bacterial counts using PLS regression 

Although microbes have the same cellular constituents, namely, proteins, 

polysaccharides, phospholipids and nucleic acids, the quantity and distribution of these 

constituents are different (Al-Holy, et al., 2006), along with some differences in microbial 
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metabolites, providing a distinctive MIR spectrum for individual microbe (Naumann, et al., 

1988). 

N-PLS regressions were used to predict the microbial counts for TVC, Pseudomonas, 

Enterobacteriaceae and Brochothrix thermosphacta from the spectral data (3000-2800 cm-1, 

1700-1500 cm-1 and 1500-1000 cm-1) recorded during the storage kinetics of chicken filets at 

5°C and 15°C. Results of PLS regressions presented in Tables 3, 4 and 5 showed an excellent 

prediction of microbes i.e., TVC, Pseudomonas, Enterobacteriaceae and Brochothrix 

thermosphacta, from the three regions of the MIR spectra. 

Best results for the predictions of the chicken-filets microbial-loads at 5 °C were 

obtained from 1500 – 1000 cm-1 region , which was able to predict TVC, Pseudomonas and 

Enterobacteriaceae using 4 PLS factor models: values of R2 equal to 0.99 were obtained for 

both, calibration and validation data sets. A value of R2 equal to 0.97 (validation) was 

obtained for Brochothrix thermosphacta using 5 factors of PLS (table 3). Due to the small 

number of PLS factors used in the developed models, over-prediction is not supposed to 

occur. 

This region is known as fingerprint region and refers to C-O and C-C stretching modes 

(1153 – 900 cm-1) and those around 1474 – 1200 cm-1 are due to the bending modes of O-C-

H, C-C-H and C-O-H (Sivakesava & Irudayaraj, 2001). Ellis, et al., (2002) found that the 

peaks present in this region (1088 and 1096 cm-1) are the most significant peaks of the MIR 

spectra for the prediction of spoilage of chicken. 
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Regarding the MIR spectra in the range of 1700 – 1500 cm-1 recorded for samples 

stored at 5°C and 15°C, excellent predictions (R2 = 0.99) were obtained, using 5 factors of 

PLS (Table 4), for the four microbial flora (TVC, Pseudomonas, Enterobacteriaceae and 

Brochothrix thermosphacta). These results of predictions showed very small RMSEC and 

RMSEV (table 4), ranging between 0.13 and 0.24 log cfu/cm² for RMSEV for data recorded 

at 5°C. 

The MIR spectra in 3000 – 2800 cm-1 range for the samples stored at 5 °C showed 

values of R2 (validation) equal to 0.98, 0.99, 0.99 and 0.94 for TVC, Pseudomonas, 

Enterobacteriaceae and Brochothrix thermosphacta, respectively, using 5 PLS factor models. 

However, for the samples of chicken breast stored at 15 °C, 5 PLS factor models  gave R2

(validation) value equal to 0.87, 0.90, 0.89, 0.87 for TVC, Pseudomonas, Enterobacteriaceae

and Brochothrix thermosphacta, respectively. Comparatively, higher values of RMSEC and 

RMSEV were obtained for this MIR spectral region (table 5) than for the two previous ones.  

This study shows that MIR spectra coupled with PLS regression makes it possible to 

identify and to quantify a given bacteria from a mixture, without any prior isolation. The good 

predictions of individual bacteria strongly suggest that the MIR spectra  retain information on 

individual bacteria and that PLS regression is able to extract specific information for 

individual bacteria. It has been shown in the past that MIR spectra recorded on bacteria 

isolates are fingerprints allowing their identification. Our results show that it is possible to 

predict individual bacterial load from MIR spectra recorded on bacterial community, i.e., 

bacterial biofilms present at the surface of chicken fillets. 
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5. Conclusions 

In this study we showed the potential of MIR spectroscopy coupled with 

chemometrics as an economical, rapid and non invasive tool to monitor the microbial spoilage 

of chicken breast samples stored aerobically at 5 and 15 °C. It was evident that MIR spectra 

collected directly from the surface of chicken breast samples , contained information that 

could be correlated with the spoilage status of the samples. 

A good classification (100 %) of meat samples according to their storage time was 

obtained using four factors PLSDA for the samples stored at 5 and 15 °C. Results of PLS 

regression performed on the MIR spectra showed, using a small number of PLS factors, an 

excellent prediction of microbes (TVC, Pseudomonas, Enterobacteriaceae and Brochothrix 

thermosphacta) detected from classical methods. 

Thus, a MIR spectrum seems to be a fingerprint and contained useful information 

related to the microbes present on the surface of chicken samples. 
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Figure 1. Mid infrared spectra of chicken breast samples stored at 5 °C recorded between A). 

1500 – 1000 cm-1, B). 1700 – 1500 cm-1, C). 3000 – 2800 cm-1. 
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Table 1. Changes in microbial flora of chicken breast samples stored at 5 and 15 °C under 

aerobic conditions. 

Mean values + standard error 

abcdef and ABCDEF Means microbial flora within a column with the same superscripts are not 

significantly different (P < 0.01). 

Storage Time 
(days)

Total Viable 
Counts Pseudomonas Enterobacteriaceae

Brochothrix 
thermosphacta

0 3.4a + 0.01 2.9a + 0.08 3.4a + 0.05 2.9a + 0.05

1 5.6b + 0.02 5.6b + 0.02 5.3b + 0.01 4.9b + 0.02

2 5.9c + 0.02 6.2c + 0.04 6.4c + 0.06 5.4c + 0.05

3 7.2d + 0.06 7.4d + 0.03 7.2d + 0.08 5.6d + 0.01

5 7.9e + 0.03 7.6e + 0.01 7.7e + 0.02 7.7e + 0.04

8 8.4f + 0.02 8.3f + 0.14 8.4f + 0.05 8.0f + 0.03

0 3.4A + 0.01 2.9A + 0.08 3.4A + 0.05 2.9A + 0.05

0.5 4.1B + 0.02 4.2B + 0.02 4.4B + 0.01 3.5B + 0.01

1 5.5C + 0.08 5.4C + 0.01 5.6C + 0.01 4.4C + 0.01

2 8.3D + 0.06 8.1D + 0.03 8.3D + 0.06 6.9D + 0.01

3 8.5E + 0.06 8.1D + 0.01 8.4D + 0.02 7.2E + 0.01

5 8.5E + 0.04 8.0D + 0.04 8.3D + 0.06 7.4F + 0.03

Storage temperature 5 °C

Storage temperature 15 °C

Microbial analysis (log cfu/cm2)



19

Table 2. Results of calibration and validation sets of partial least square discriminant analysis 

carried out on mid infrared spectra of the chicken breast samples stored at 5 °C for 0, 1, 2, 3, 5 

and 8 days, using 4 factors (rows: observed classification; columns: predicted classification). 

0 1 2 3 5 8 0 1 2 3 5 8

0 2 0 0 0 0 0 100
1 0 1 0 0 0 0 100 0 1 0 0 0 0 100
2 0 0 1 0 0 0 100 0 0 1 0 0 0 100
3 0 0 0 1 0 0 100 0 0 0 1 0 0 100
5 0 0 0 0 2 0 100
8 0 0 0 0 0 1 100 0 0 0 0 0 1 100
0 2 0 0 0 0 0 100
1 0 1 0 0 0 0 100 0 1 0 0 0 0 100
2 0 0 1 0 0 0 100 0 0 1 0 0 0 100
3 0 0 0 1 0 0 100 0 0 0 1 0 0 100
5 0 0 0 0 2 0 100
8 0 0 0 0 0 1 100 0 0 0 0 0 1 100
0 2 0 0 0 0 0 100
1 0 1 0 0 0 0 100 0 1 0 0 0 0 100
2 0 0 1 0 0 0 100 0 0 1 0 0 0 100
3 0 0 0 1 0 0 100 0 0 0 1 0 0 100
5 0 0 0 0 2 0 100
8 0 0 0 0 0 1 100 0 0 0 0 0 1 100

MIR region

3000 - 2800 cm-1

Validation

% of good 
classification

% of good 
classification

Storage 
time 

(Days)

Calibration

1700 - 1500 cm-1

1500 - 1000 cm-1
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Table 3. Results of PLS regression carried out on mid infrared spectra (1500 –1000 cm-1) and 

microbial data obtained by traditional technique on chicken breast samples at 5 °C. 

R2C: Coefficient of regression for calibration 

RMSEC: Root mean square error of calibration  

R2V: Coefficient of regression for validation 

RMSEV: Root mean square error of validation 

TVC Pseudomonas Enterobacteriaceae B. thermosphacta

No. of PLS Factors 4 4 4 5

R2C 0.99 0.99 0.99 0.99
RMSEC 0.14 0.20 0.18 0.07

R2V 0.99 0.99 0.99 0.97
RMSEV 0.16 0.19 0.19 0.39

No. of PLS Factors 5 5 5 5

R2C 0.99 0.99 0.99 0.99
RMSEC 0.01 0.01 0.01 0.03

R2V 0.98 0.98 0.99 0.99
RMSEV 0.28 0.30 0.21 0.19

PLS Results

Microbial Flora

5 °C

15 °C
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Table 4. Results of PLS regression carried out on mid infrared spectra (1700 – 1500 cm-1) and 

microbial data obtained by traditional technique on chicken breast samples at 5 °C. 

R2C: Coefficient of regression for calibration 

RMSEC: Root mean square error of calibration  

R2V: Coefficient of regression for validation 

RMSEV: Root mean square error of validation 

TVC Pseudomonas Enterobacteriaceae B. thermosphacta

No. of PLS Factors 5 5 5 5

R2C 0.99 0.99 0.99 0.99
RMSEC 0.03 0.06 0.05 0.13

R2V 0.99 0.99 0.99 0.99
RMSEV 0.13 0.18 0.19 0.24

No. of PLS Factors 5 5 5 5

R2C 0.99 0.99 0.99 0.99
RMSEC 0.13 0.14 0.13 0.13

R2V 0.99 0.99 0.99 0.99
RMSEV 0.22 0.12 0.15 0.21

Microbial Flora

PLS Results

5 °C

15 °C
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Table 5. Results of PLS regression carried out on mid infrared spectra (3000 – 2800 cm-1) and 

microbial data obtained by traditional technique on chicken breast samples at 5 °C. 

R2C: Coefficient of regression for calibration 

RMSEC: Root mean square error of calibration  

R2V: Coefficient of regression for validation 

RMSEV: Root mean square error of validation 

TVC Pseudomonas Enterobacteriaceae B. thermosphacta

No. of PLS Factors 5 5 5 5

R2C 0.99 0.99 0.99 0.99
RMSEC 0.06 0.55 0.07 0.13

R2V 0.98 0.99 0.99 0.94
RMSEV 0.40 0.47 0.51 0.51

No. of PLS Factors 5 5 5 5

R2C 0.99 0.99 0.99 0.99
RMSEC 0.21 0.24 0.23 0.18

R2V 0.87 0.90 0.89 0.87
RMSEV 0.96 0.97 0.89 0.86

Microbial Flora

PLS Results

5 °C

15 °C
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RÉSUMÉ

Il y a une nécessité à maîtriser la qualité des produits carnés au cours du processus de 

fabrication en un temps aussi court que possible, ce qui exige de remplacer les techniques classiques 

(longues et coûteuses) par des techniques rapides, sensibles et moins coûteuses. Les techniques 

spectroscopiques présentent les qualités requises. En particulier, les spectroscopies de fluorescence 

et moyen infrarouge couplées à la chimiométrie ont été considérées comme de bons candidats pour 

l'analyse rapide des produits alimentaires, en général, et de la viande et des produits carnés, en 

particulier. 

La première partie de cette thèse porte sur la discrimination de sept muscles de bovins 

(Semitendinosus, Semimembranosus,, Tensor fasciae latae, Rectus abdominis, Longissimus thoracis 

et lumborum, Triceps branchii  and Infraspinatus) et la prédiction de certains paramètres physico-

chimiques de la viande à partir des spectres de fluorescence. Les méthodes d’analyse statistique 

multidimensionnelle (PLS, PLSDA) appliquées aux données spectrales ont permis de discriminer 

les sept muscles de bovins et de prédire certaines caractéristiques physico-chimiques de la viande. 

Dans la deuxième partie, les effets de différentes températures (66, 90 et 237 °C) et temps 

(1, 2, 5, 7 et 10 minutes) de cuisson sur les caractéristiques des constituants de la viande ont été 

observés à l'aide des spectroscopies de fluorescence synchrone et moyen infrarouge couplées à la 

chimiométrie. Les méthodes ACP et PARAFAC ont été utilisées pour extraire les informations 

relatives à la formation de composés issus de la réaction de Maillard et à l’évolution des 

tryptophanes des protéines. La méthode de régression N-PLS a été utilisée avec succès pour prédire 

certaines amines hétérocycliques (4.8 DiMeIQx, MeIQx, IQx et PhIP) de la viande grillée.  

Enfin, dans la troisième partie de la thèse, le potentiel des spectroscopies de fluorescence 

synchrone et moyen infrarouge couplées à la chimiométrie a été envisagé pour la détermination de 

la charge microbienne (flore totale, Pseudomonas, Enterobacteriaceae et Brochothrix 

thermosphacta) de filets de poulet durant les cinétiques de stockages (0, 1, 2, 3, 5 et 8 jours à 5 °C 

et 0, 0,5, 1, 2, 3, et 5 jours à 15 °C). Les méthodes de régression N-PLS et PLS ont permis de 

prédire avec une bonne précision les charges pour chaque microorganisme considéré présent à la 

surface des filets de poulet à partir des spectres enregistrés. Les résultats ont mis en évidence le 

potentiel des spectroscopies de fluorescence et moyen infrarouge couplées à la chimiométrie pour 

l'analyse non destructive de la qualité nutritionnelle et hygiénique des viandes. 

Mots-clés : viande, spectroscopie de fluorescence, spectroscopie de fluorescence synchrone, 

spectroscopie moyen infrarouge, paramètres physico-chimiques, chimiométrie, amines aromatiques 

hétérocycliques, microorganismes 



ABSTRACT 

There is a growing need to control the quality of meat products throughout the 

manufacturing process in minimum possible time, which requires replacement of the conventional 

techniques (long and expensive) with some rapid, sensitive and less expensive techniques. 

Spectroscopic techniques appear to be reagentless, fast and non destructive techniques. Particularly, 

fluorescence and mid infrared spectroscopies coupled with chemometrics have been considered as 

good candidates for rapid analysis of food products, in general, and for meat and meat products, in 

particular. 

The first part of this thesis work focuses on the discrimination of seven bovine muscles 

(Semitendinosus, Semimembranosus,, Tensor fasciae latae, Rectus abdominis, Longissimus thoracis 

et lumborum, Triceps branchii  and Infraspinatus) and prediction of certain physico-chemical 

parameters of meat using front-face fluorescence spectroscopy. The statistical analysis (PLS, 

PLSDA) applied to the fluorescence spectral data discriminate well seven bovine muscles and good 

predictions of physico-chemical characteristics of meat were obtained. 

In the second part, the effects of different temperatures (66, 90 and 237 °C) and cooking 

times (1, 2, 5, 7 and 10 minutes) on the characteristics of the constituents of meat were investigated 

using synchronous fluorescence and mid infrared spectroscopy coupled with chemometrics. PCA 

and PARAFAC methods were used to derive information about the evolution of Maillard reaction. 

N-PLS regression method was successfully used to predict the amounts of certain heterocyclic 

amines (4.8 DiMeIQx, MeIQx, IQx and PhIP) in grilled meat. 

Finally, in the third part, the potential of synchronous fluorescence and mid infrared 

spectroscopies along with chemometrics was investigated for the determination of the microbial 

loads (total viable count, Pseudomonas, Enterobacteriaceae and Brochothrix thermosphacta) on 

chicken fillets during the kinetics of storages (0, 1, 2, 3, 5, 8 days at 5 °C and 0, 0.5, 1, 2, 3, 5 days 

at 15 °C). N-PLS and PLS regression methods allowed to predict with a good accuracy the loads for 

each bacterium on the surface of chicken fillets from synchronous fluorescence and mid infra data. 

The results showed the potential of fluorescence and mid infrared spectroscopies coupled 

with chemometrics for the non-destructive analysis of nutritional and hygienic quality of meat and 

meat products.  

Keywords : Meat, fluorescence spectroscopy, synchronous fluorescence spectroscopy, mid infrared 

spectroscopy, physico-chemical parameters, chemometrics, heterocyclic aromatic amines, 

microorganisms. 


